ChatPipeshift
這將幫助您開始使用 Pipeshift 聊天模型。如需所有 ChatPipeshift 功能和配置的詳細文件,請前往 API 參考。
概觀
整合詳細資訊
類別 | 套件 | 本地 | 可序列化 | JS 支援 | 套件下載 | 套件最新版本 |
---|---|---|---|---|---|---|
ChatPipeshift | langchain-pipeshift | ❌ | - | ❌ |
模型功能
工具呼叫 | 結構化輸出 | JSON 模式 | 圖像輸入 | 音訊輸入 | 視訊輸入 | Token 層級串流 | 原生非同步 | Token 使用量 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | - |
設定
若要存取 Pipeshift 模型,您需要於 Pipeshift 上建立帳戶、取得 API 金鑰,並安裝 langchain-pipeshift
整合套件。
憑證
前往 Pipeshift 註冊 Pipeshift 並產生 API 金鑰。完成後,設定 PIPESHIFT_API_KEY 環境變數
import getpass
import os
if not os.getenv("PIPESHIFT_API_KEY"):
os.environ["PIPESHIFT_API_KEY"] = getpass.getpass("Enter your Pipeshift API key: ")
如果您想要取得模型呼叫的自動追蹤,您也可以設定您的 LangSmith API 金鑰,取消註解下方內容
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
安裝
LangChain Pipeshift 整合位於 langchain-pipeshift
套件中
%pip install -qU langchain-pipeshift
Note: you may need to restart the kernel to use updated packages.
實例化
現在我們可以實例化我們的模型物件並產生聊天完成
from langchain_pipeshift import ChatPipeshift
llm = ChatPipeshift(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
temperature=0,
max_tokens=512,
# other params...
)
調用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='Here is the translation:\n\nJe suis amoureux du programme. \n\nHowever, a more common translation would be:\n\nJ\'aime programmer.\n\nNote that "Je suis amoureux" typically implies romantic love, whereas "J\'aime" is a more casual way to express affection or enjoyment for an activity, in this case, programming.', additional_kwargs={}, response_metadata={}, id='run-5cad8e5c-d089-44a8-8dcd-22736cde7d7b-0')
print(ai_msg.content)
Here is the translation:
Je suis amoureux du programme.
However, a more common translation would be:
J'aime programmer.
Note that "Je suis amoureux" typically implies romantic love, whereas "J'aime" is a more casual way to express affection or enjoyment for an activity, in this case, programming.
串鏈
我們可以像這樣使用提示範本串鏈我們的模型
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 參考:ChatPromptTemplate
AIMessage(content="Das ist schön! Du liebst Programmieren! (That's great! You love programming!)\n\nWould you like to know the German translation of a specific programming-related term or phrase, or would you like me to help you with something else?", additional_kwargs={}, response_metadata={}, id='run-8a4b7d56-23d9-43a7-8fb2-e05f556d94bd-0')
API 參考
如需所有 ChatPipeshift 功能和配置的詳細文件,請前往 API 參考:https://dashboard.pipeshift.com/docs