ChatTogether
本頁面將協助您開始使用 Together AI 聊天模型。如需所有 ChatTogether 功能和組態的詳細文件,請前往 API 參考文件。
Together AI 提供 API 來查詢 50 多個領先的開放原始碼模型
總覽
整合詳細資訊
類別 | 套件 | 本地 | 可序列化 | JS 支援 | 套件下載次數 | 套件最新版本 |
---|---|---|---|---|---|---|
ChatTogether | langchain-together | ❌ | beta | ✅ |
模型功能
工具呼叫 | 結構化輸出 | JSON 模式 | 影像輸入 | 音訊輸入 | 視訊輸入 | Token 層級串流 | 原生非同步 | Token 使用量 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
設定
若要存取 Together 模型,您需要建立 Together 帳戶、取得 API 金鑰,並安裝 langchain-together
整合套件。
憑證
前往 此頁面 註冊 Together 並產生 API 金鑰。完成後,設定 TOGETHER_API_KEY 環境變數
import getpass
import os
if "TOGETHER_API_KEY" not in os.environ:
os.environ["TOGETHER_API_KEY"] = getpass.getpass("Enter your Together API key: ")
如果您想要取得模型呼叫的自動追蹤,您也可以設定您的 LangSmith API 金鑰,取消註解下方即可
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安裝
LangChain Together 整合位於 langchain-together
套件中
%pip install -qU langchain-together
實例化
現在我們可以實例化我們的模型物件並產生聊天完成結果
from langchain_together import ChatTogether
llm = ChatTogether(
model="meta-llama/Llama-3-70b-chat-hf",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
API 參考:ChatTogether
調用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 35, 'total_tokens': 44}, 'model_name': 'meta-llama/Llama-3-70b-chat-hf', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-eabcbe33-cdd8-45b8-ab0b-f90b6e7dfad8-0', usage_metadata={'input_tokens': 35, 'output_tokens': 9, 'total_tokens': 44})
print(ai_msg.content)
J'adore la programmation.
串鏈
我們可以像這樣使用提示範本串鏈我們的模型
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 參考:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 30, 'total_tokens': 37}, 'model_name': 'meta-llama/Llama-3-70b-chat-hf', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-a249aa24-ee31-46ba-9bf9-f4eb135b0a95-0', usage_metadata={'input_tokens': 30, 'output_tokens': 7, 'total_tokens': 37})
API 參考
如需所有 ChatTogether 功能和組態的詳細文件,請前往 API 參考文件:https://langchain-python.dev.org.tw/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html