跳到主要內容
Open In ColabOpen on GitHub

WeChat

目前尚無直接匯出個人微信訊息的方法。然而,如果您只需要少量訊息(不超過數百條)用於模型微調或少量範例,此筆記本展示了如何建立您自己的聊天載入器,該載入器適用於複製貼上的微信訊息到 LangChain 訊息列表。

靈感來自 https://langchain-python.dev.org.tw/docs/integrations/chat_loaders/discord

此過程包含五個步驟

  1. 在 WeChat 桌面應用程式中開啟您的聊天。通過滑鼠拖曳或右鍵點擊選擇您需要的訊息。由於限制,您一次最多只能選擇 100 條訊息。按 CMD/Ctrl + C 複製。
  2. 通過將選取的訊息貼到本機電腦上的檔案中,建立聊天 .txt 檔案。
  3. 從下方複製聊天載入器定義到本機檔案。
  4. 使用指向文字檔案的檔案路徑初始化 WeChatChatLoader
  5. 呼叫 loader.load() (或 loader.lazy_load()) 執行轉換。

1. 建立訊息轉儲

此載入器僅支援通過在應用程式中複製訊息到剪貼簿並貼到檔案中生成的 .txt 檔案格式。以下是一個範例。

%%writefile wechat_chats.txt
女朋友 2023/09/16 2:51 PM
天气有点凉

男朋友 2023/09/16 2:51 PM
珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。

女朋友 2023/09/16 3:06 PM
忙什么呢

男朋友 2023/09/16 3:06 PM
今天只干成了一件像样的事
那就是想你

女朋友 2023/09/16 3:06 PM
[动画表情]
Overwriting wechat_chats.txt

2. 定義聊天載入器

LangChain 目前不支援

import logging
import re
from typing import Iterator, List

from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage

logger = logging.getLogger()


class WeChatChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
"""
Initialize the Discord chat loader.

Args:
path: Path to the exported Discord chat text file.
"""
self.path = path
self._message_line_regex = re.compile(
r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))",
# flags=re.DOTALL,
)

def _append_message_to_results(
self,
results: List,
current_sender: str,
current_timestamp: str,
current_content: List[str],
):
content = "\n".join(current_content).strip()
# skip non-text messages like stickers, images, etc.
if not re.match(r"\[.*\]", content):
results.append(
HumanMessage(
content=content,
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return results

def _load_single_chat_session_from_txt(
self, file_path: str
) -> chat_loaders.ChatSession:
"""
Load a single chat session from a text file.

Args:
file_path: Path to the text file containing the chat messages.

Returns:
A `ChatSession` object containing the loaded chat messages.
"""
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()

results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
current_sender, current_timestamp = re.match(
self._message_line_regex, line
).groups()
current_content = []
else:
current_content.append(line.strip())

if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)

return chat_loaders.ChatSession(messages=results)

def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
"""
Lazy load the messages from the chat file and yield them in the required format.

Yields:
A `ChatSession` object containing the loaded chat messages.
"""
yield self._load_single_chat_session_from_txt(self.path)
API 參考文件:base | BaseMessage | HumanMessage

2. 建立載入器

我們將指向剛剛寫入磁碟的檔案。

loader = WeChatChatLoader(
path="./wechat_chats.txt",
)

3. 載入訊息

假設格式正確,載入器會將聊天記錄轉換為 langchain 訊息。

from typing import List

from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession

raw_messages = loader.lazy_load()
# Merge consecutive messages from the same sender into a single message
merged_messages = merge_chat_runs(raw_messages)
# Convert messages from "男朋友" to AI messages
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="男朋友"))
messages
[{'messages': [HumanMessage(content='天气有点凉', additional_kwargs={'sender': '女朋友', 'events': [{'message_time': '2023/09/16 2:51 PM'}]}, example=False),
AIMessage(content='珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。', additional_kwargs={'sender': '男朋友', 'events': [{'message_time': '2023/09/16 2:51 PM'}]}, example=False),
HumanMessage(content='忙什么呢', additional_kwargs={'sender': '女朋友', 'events': [{'message_time': '2023/09/16 3:06 PM'}]}, example=False),
AIMessage(content='今天只干成了一件像样的事\n那就是想你', additional_kwargs={'sender': '男朋友', 'events': [{'message_time': '2023/09/16 3:06 PM'}]}, example=False)]}]

後續步驟

然後您可以按照您的需求使用這些訊息,例如微調模型、少量範例選擇,或直接預測下一條訊息

from langchain_openai import ChatOpenAI

llm = ChatOpenAI()

for chunk in llm.stream(messages[0]["messages"]):
print(chunk.content, end="", flush=True)
API 參考文件:ChatOpenAI

此頁面是否有幫助?