跳至主要內容

Figma

Figma 是一個用於介面設計的協作式 Web 應用程式。

本筆記本涵蓋如何從 Figma REST API 將資料載入到可以被 LangChain 攝取的格式中,以及程式碼產生的範例用法。

import os

from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders.figma import FigmaFileLoader
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_openai import ChatOpenAI

Figma API 需要一個存取權杖 (access token)、節點 ID (node_ids) 和一個檔案金鑰 (file key)。

檔案金鑰可以從 URL 中提取。https://www.figma.com/file/\{filekey\}/sampleFilename

節點 ID 也可以在 URL 中找到。點擊任何東西,然後尋找 '?node-id={node_id}' 參數。

存取權杖的說明位於 Figma 說明中心文章中:https://help.figma.com/hc/en-us/articles/8085703771159-Manage-personal-access-tokens

figma_loader = FigmaFileLoader(
os.environ.get("ACCESS_TOKEN"),
os.environ.get("NODE_IDS"),
os.environ.get("FILE_KEY"),
)
# see https://langchain-python.dev.org.tw/en/latest/modules/data_connection/getting_started.html for more details
index = VectorstoreIndexCreator().from_loaders([figma_loader])
figma_doc_retriever = index.vectorstore.as_retriever()
def generate_code(human_input):
# I have no idea if the Jon Carmack thing makes for better code. YMMV.
# See https://langchain-python.dev.org.tw/en/latest/modules/models/chat/getting_started.html for chat info
system_prompt_template = """You are expert coder Jon Carmack. Use the provided design context to create idiomatic HTML/CSS code as possible based on the user request.
Everything must be inline in one file and your response must be directly renderable by the browser.
Figma file nodes and metadata: {context}"""

human_prompt_template = "Code the {text}. Ensure it's mobile responsive"
system_message_prompt = SystemMessagePromptTemplate.from_template(
system_prompt_template
)
human_message_prompt = HumanMessagePromptTemplate.from_template(
human_prompt_template
)
# delete the gpt-4 model_name to use the default gpt-3.5 turbo for faster results
gpt_4 = ChatOpenAI(temperature=0.02, model_name="gpt-4")
# Use the retriever's 'get_relevant_documents' method if needed to filter down longer docs
relevant_nodes = figma_doc_retriever.invoke(human_input)
conversation = [system_message_prompt, human_message_prompt]
chat_prompt = ChatPromptTemplate.from_messages(conversation)
response = gpt_4(
chat_prompt.format_prompt(
context=relevant_nodes, text=human_input
).to_messages()
)
return response
response = generate_code("page top header")

response.content 中傳回以下內容

<!DOCTYPE html>\n<html lang="en">\n<head>\n    <meta charset="UTF-8">\n    <meta name="viewport" content="width=device-width, initial-scale=1.0">\n    <style>\n        @import url(\'https://fonts.googleapis.com/css2?family=DM+Sans:wght@500;700&family=Inter:wght@600&display=swap\');\n\n        body {\n            margin: 0;\n            font-family: \'DM Sans\', sans-serif;\n        }\n\n        .header {\n            display: flex;\n            justify-content: space-between;\n            align-items: center;\n            padding: 20px;\n            background-color: #fff;\n            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);\n        }\n\n        .header h1 {\n            font-size: 16px;\n            font-weight: 700;\n            margin: 0;\n        }\n\n        .header nav {\n            display: flex;\n            align-items: center;\n        }\n\n        .header nav a {\n            font-size: 14px;\n            font-weight: 500;\n            text-decoration: none;\n            color: #000;\n            margin-left: 20px;\n        }\n\n        @media (max-width: 768px) {\n            .header nav {\n                display: none;\n            }\n        }\n    </style>\n</head>\n<body>\n    <header class="header">\n        <h1>Company Contact</h1>\n        <nav>\n            <a href="#">Lorem Ipsum</a>\n            <a href="#">Lorem Ipsum</a>\n            <a href="#">Lorem Ipsum</a>\n        </nav>\n    </header>\n</body>\n</html>

此頁面是否對您有幫助?