Replicate
Replicate 在雲端執行機器學習模型。我們有一個開源模型庫,您可以使用幾行程式碼來執行。如果您正在建構自己的機器學習模型,Replicate 可以輕鬆地大規模部署它們。
此範例說明如何使用 LangChain 與 Replicate
模型互動
設定
# magics to auto-reload external modules in case you are making changes to langchain while working on this notebook
%load_ext autoreload
%autoreload 2
若要執行此筆記本,您需要建立一個 replicate 帳戶並安裝 replicate python client。
!poetry run pip install replicate
Collecting replicate
Using cached replicate-0.25.1-py3-none-any.whl.metadata (24 kB)
Requirement already satisfied: httpx<1,>=0.21.0 in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from replicate) (0.24.1)
Requirement already satisfied: packaging in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from replicate) (23.2)
Requirement already satisfied: pydantic>1.10.7 in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from replicate) (1.10.14)
Requirement already satisfied: typing-extensions>=4.5.0 in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from replicate) (4.10.0)
Requirement already satisfied: certifi in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from httpx<1,>=0.21.0->replicate) (2024.2.2)
Requirement already satisfied: httpcore<0.18.0,>=0.15.0 in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from httpx<1,>=0.21.0->replicate) (0.17.3)
Requirement already satisfied: idna in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from httpx<1,>=0.21.0->replicate) (3.6)
Requirement already satisfied: sniffio in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from httpx<1,>=0.21.0->replicate) (1.3.1)
Requirement already satisfied: h11<0.15,>=0.13 in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from httpcore<0.18.0,>=0.15.0->httpx<1,>=0.21.0->replicate) (0.14.0)
Requirement already satisfied: anyio<5.0,>=3.0 in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from httpcore<0.18.0,>=0.15.0->httpx<1,>=0.21.0->replicate) (3.7.1)
Requirement already satisfied: exceptiongroup in /Users/charlieholtz/miniconda3/envs/langchain/lib/python3.9/site-packages (from anyio<5.0,>=3.0->httpcore<0.18.0,>=0.15.0->httpx<1,>=0.21.0->replicate) (1.2.0)
Using cached replicate-0.25.1-py3-none-any.whl (39 kB)
Installing collected packages: replicate
Successfully installed replicate-0.25.1
# get a token: https://replicate.com/account
from getpass import getpass
REPLICATE_API_TOKEN = getpass()
import os
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
from langchain.chains import LLMChain
from langchain_community.llms import Replicate
from langchain_core.prompts import PromptTemplate
呼叫模型
在 replicate 探索頁面上尋找模型,然後以 model_name/version 格式貼上模型名稱和版本。
例如,這是 Meta Llama 3
。
llm = Replicate(
model="meta/meta-llama-3-8b-instruct",
model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
prompt = """
User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?
Assistant:
"""
llm(prompt)
"Let's break this down step by step:\n\n1. A dog is a living being, specifically a mammal.\n2. Dogs do not possess the cognitive abilities or physical characteristics necessary to operate a vehicle, such as a car.\n3. Operating a car requires complex mental and physical abilities, including:\n\t* Understanding of traffic laws and rules\n\t* Ability to read and comprehend road signs\n\t* Ability to make decisions quickly and accurately\n\t* Ability to physically manipulate the vehicle's controls (e.g., steering wheel, pedals)\n4. Dogs do not possess any of these abilities. They are unable to read or comprehend written language, let alone complex traffic laws.\n5. Dogs also lack the physical dexterity and coordination to operate a vehicle's controls. Their paws and claws are not adapted for grasping or manipulating small, precise objects like a steering wheel or pedals.\n6. Therefore, it is not possible for a dog to drive a car.\n\nAnswer: No."
另一個範例,對於此 dolly 模型,請點擊 API 標籤。模型名稱/版本將為:replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5
僅 model
參數為必填,但我們可以在初始化時新增其他模型參數。
例如,如果我們正在執行 stable diffusion 並想要變更圖像尺寸
Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})
請注意,僅會傳回模型的第一個輸出。
llm = Replicate(
model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5"
)
prompt = """
Answer the following yes/no question by reasoning step by step.
Can a dog drive a car?
"""
llm(prompt)
'No, dogs lack some of the brain functions required to operate a motor vehicle. They cannot focus and react in time to accelerate or brake correctly. Additionally, they do not have enough muscle control to properly operate a steering wheel.\n\n'
我們可以使用此語法呼叫任何 replicate 模型。例如,我們可以呼叫 stable diffusion。
text2image = Replicate(
model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf",
model_kwargs={"image_dimensions": "512x512"},
)
image_output = text2image("A cat riding a motorcycle by Picasso")
image_output
'https://pbxt.replicate.delivery/bqQq4KtzwrrYL9Bub9e7NvMTDeEMm5E9VZueTXkLE7kWumIjA/out-0.png'
模型會輸出一個 URL。讓我們渲染它。
!poetry run pip install Pillow
Requirement already satisfied: Pillow in /Users/bagatur/langchain/.venv/lib/python3.9/site-packages (9.5.0)
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m23.2[0m[39;49m -> [0m[32;49m23.2.1[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
from io import BytesIO
import requests
from PIL import Image
response = requests.get(image_output)
img = Image.open(BytesIO(response.content))
img
串流回應
您可以選擇性地串流產生中的回應,這有助於向使用者顯示耗時產生的互動性。請參閱關於 串流 的詳細文檔以瞭解更多資訊。
from langchain_core.callbacks import StreamingStdOutCallbackHandler
llm = Replicate(
streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5",
model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
prompt = """
User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?
Assistant:
"""
_ = llm.invoke(prompt)
1. Dogs do not have the physical ability to operate a vehicle.
停止序列
您也可以指定停止序列。如果您有一個明確的停止序列,用於您將要解析的生成,那麼一旦達到一個或多個停止序列就取消生成會更好(更便宜且更快!),而不是讓模型漫無目的地持續到指定的 max_length
。停止序列無論您是否處於串流模式都有效,並且 Replicate 只會針對停止序列之前的生成向您收費。
import time
llm = Replicate(
model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5",
model_kwargs={"temperature": 0.01, "max_length": 500, "top_p": 1},
)
prompt = """
User: What is the best way to learn python?
Assistant:
"""
start_time = time.perf_counter()
raw_output = llm.invoke(prompt) # raw output, no stop
end_time = time.perf_counter()
print(f"Raw output:\n {raw_output}")
print(f"Raw output runtime: {end_time - start_time} seconds")
start_time = time.perf_counter()
stopped_output = llm.invoke(prompt, stop=["\n\n"]) # stop on double newlines
end_time = time.perf_counter()
print(f"Stopped output:\n {stopped_output}")
print(f"Stopped output runtime: {end_time - start_time} seconds")
Raw output:
There are several ways to learn Python, and the best method for you will depend on your learning style and goals. Here are a few suggestions:
1. Online tutorials and courses: Websites such as Codecademy, Coursera, and edX offer interactive coding lessons and courses that can help you get started with Python. These courses are often designed for beginners and cover the basics of Python programming.
2. Books: There are many books available that can teach you Python, ranging from introductory texts to more advanced manuals. Some popular options include "Python Crash Course" by Eric Matthes, "Automate the Boring Stuff with Python" by Al Sweigart, and "Python for Data Analysis" by Wes McKinney.
3. Videos: YouTube and other video platforms have a wealth of tutorials and lectures on Python programming. Many of these videos are created by experienced programmers and can provide detailed explanations and examples of Python concepts.
4. Practice: One of the best ways to learn Python is to practice writing code. Start with simple programs and gradually work your way up to more complex projects. As you gain experience, you'll become more comfortable with the language and develop a better understanding of its capabilities.
5. Join a community: There are many online communities and forums dedicated to Python programming, such as Reddit's r/learnpython community. These communities can provide support, resources, and feedback as you learn.
6. Take online courses: Many universities and organizations offer online courses on Python programming. These courses can provide a structured learning experience and often include exercises and assignments to help you practice your skills.
7. Use a Python IDE: An Integrated Development Environment (IDE) is a software application that provides an interface for writing, debugging, and testing code. Popular Python IDEs include PyCharm, Visual Studio Code, and Spyder. These tools can help you write more efficient code and provide features such as code completion, debugging, and project management.
Which of the above options do you think is the best way to learn Python?
Raw output runtime: 25.27470933299992 seconds
Stopped output:
There are several ways to learn Python, and the best method for you will depend on your learning style and goals. Here are some suggestions:
Stopped output runtime: 25.77039254200008 seconds
鏈式呼叫
langchain 的重點是...鏈!以下是如何執行此操作的範例。
from langchain.chains import SimpleSequentialChain
首先,讓我們將此模型的 LLM 定義為 flan-5,將 text2image 定義為 stable diffusion 模型。
dolly_llm = Replicate(
model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5"
)
text2image = Replicate(
model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf"
)
鏈中的第一個提示
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=dolly_llm, prompt=prompt)
第二個提示是取得公司描述的標誌
second_prompt = PromptTemplate(
input_variables=["company_name"],
template="Write a description of a logo for this company: {company_name}",
)
chain_two = LLMChain(llm=dolly_llm, prompt=second_prompt)
第三個提示,讓我們根據提示 2 的描述輸出建立圖像
third_prompt = PromptTemplate(
input_variables=["company_logo_description"],
template="{company_logo_description}",
)
chain_three = LLMChain(llm=text2image, prompt=third_prompt)
現在讓我們執行它!
# Run the chain specifying only the input variable for the first chain.
overall_chain = SimpleSequentialChain(
chains=[chain, chain_two, chain_three], verbose=True
)
catchphrase = overall_chain.run("colorful socks")
print(catchphrase)
[1m> Entering new SimpleSequentialChain chain...[0m
[36;1m[1;3mColorful socks could be named after a song by The Beatles or a color (yellow, blue, pink). A good combination of letters and digits would be 6399. Apple also owns the domain 6399.com so this could be reserved for the Company.
[0m
[33;1m[1;3mA colorful sock with the numbers 3, 9, and 99 screen printed in yellow, blue, and pink, respectively.
[0m
[38;5;200m[1;3mhttps://pbxt.replicate.delivery/P8Oy3pZ7DyaAC1nbJTxNw95D1A3gCPfi2arqlPGlfG9WYTkRA/out-0.png[0m
[1m> Finished chain.[0m
https://pbxt.replicate.delivery/P8Oy3pZ7DyaAC1nbJTxNw95D1A3gCPfi2arqlPGlfG9WYTkRA/out-0.png
response = requests.get(
"https://replicate.delivery/pbxt/682XgeUlFela7kmZgPOf39dDdGDDkwjsCIJ0aQ0AO5bTbbkiA/out-0.png"
)
img = Image.open(BytesIO(response.content))
img