TiDB
TiDB Cloud 是一個全面的資料庫即服務 (DBaaS) 解決方案,提供專用和無伺服器選項。TiDB Serverless 現在將內建的向量搜尋整合到 MySQL 環境中。透過此增強功能,您可以使用 TiDB Serverless 無縫開發 AI 應用程式,而無需新的資料庫或其他技術堆疊。建立免費的 TiDB Serverless 叢集,並在 https://pingcap.com/ai 開始使用向量搜尋功能。
本筆記本介紹如何使用 TiDB 儲存聊天訊息歷史記錄。
設定
首先,我們將安裝以下相依性
%pip install --upgrade --quiet langchain langchain_openai langchain-community
設定您的 OpenAI 金鑰
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("Input your OpenAI API key:")
最後,我們將設定與 TiDB 的連線。在本筆記本中,我們將遵循 TiDB Cloud 提供的標準連線方法,以建立安全且有效率的資料庫連線。
# copy from tidb cloud console
tidb_connection_string_template = "mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true"
tidb_password = getpass.getpass("Input your TiDB password:")
tidb_connection_string = tidb_connection_string_template.replace(
"<PASSWORD>", tidb_password
)
產生歷史資料
建立一組歷史資料,這將作為我們即將進行的示範的基礎。
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory
history = TiDBChatMessageHistory(
connection_string=tidb_connection_string,
session_id="code_gen",
earliest_time=datetime.utcnow(), # Optional to set earliest_time to load messages after this time point.
)
history.add_user_message("How's our feature going?")
history.add_ai_message(
"It's going well. We are working on testing now. It will be released in Feb."
)
API 參考:TiDBChatMessageHistory
history.messages
[HumanMessage(content="How's our feature going?"),
AIMessage(content="It's going well. We are working on testing now. It will be released in Feb.")]
與歷史資料聊天
讓我們以先前產生的歷史資料為基礎,建立動態的聊天互動。
首先,使用 LangChain 建立聊天鏈
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're an assistant who's good at coding. You're helping a startup build",
),
MessagesPlaceholder(variable_name="history"),
("human", "{question}"),
]
)
chain = prompt | ChatOpenAI()
在歷史記錄上建立 Runnable
from langchain_core.runnables.history import RunnableWithMessageHistory
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: TiDBChatMessageHistory(
session_id=session_id, connection_string=tidb_connection_string
),
input_messages_key="question",
history_messages_key="history",
)
API 參考:RunnableWithMessageHistory
啟動聊天
response = chain_with_history.invoke(
{"question": "Today is Jan 1st. How many days until our feature is released?"},
config={"configurable": {"session_id": "code_gen"}},
)
response
AIMessage(content='There are 31 days in January, so there are 30 days until our feature is released in February.')
檢查歷史資料
history.reload_cache()
history.messages
[HumanMessage(content="How's our feature going?"),
AIMessage(content="It's going well. We are working on testing now. It will be released in Feb."),
HumanMessage(content='Today is Jan 1st. How many days until our feature is released?'),
AIMessage(content='There are 31 days in January, so there are 30 days until our feature is released in February.')]