Skip to main content
Open on GitHub

Valthera

Valthera 是一個開放原始碼框架,可讓 LLM 代理程式驅動有意義、感知情境的使用者互動。它會即時評估使用者的動機和能力,確保僅在使用者最容易接受時才觸發通知和動作。

langchain-valthera 將 Valthera 與 LangChain 整合,使開發人員能夠建置更智慧、行為驅動的互動系統,以提供個人化的互動。

安裝與設定

安裝 langchain-valthera

透過 pip 安裝 LangChain Valthera 套件

pip install -U langchain-valthera

匯入 ValtheraTool

from langchain_valthera.tools import ValtheraTool

範例:初始化 LangChain 的 ValtheraTool

此範例示範如何使用 DataAggregator 和動機與能力評分設定來初始化 ValtheraTool。

import os
from langchain_openai import ChatOpenAI
from valthera.aggregator import DataAggregator
from mocks import hubspot, posthog, snowflake # Replace these with your actual connector implementations
from langchain_valthera.tools import ValtheraTool

# Initialize the DataAggregator with your data connectors
data_aggregator = DataAggregator(
connectors={
"hubspot": hubspot(),
"posthog": posthog(),
"app_db": snowflake()
}
)

# Initialize the ValtheraTool with your scoring configurations
valthera_tool = ValtheraTool(
data_aggregator=data_aggregator,
motivation_config=[
{"key": "hubspot_lead_score", "weight": 0.30, "transform": lambda x: min(x, 100) / 100.0},
{"key": "posthog_events_count_past_30days", "weight": 0.30, "transform": lambda x: min(x, 50) / 50.0},
{"key": "hubspot_marketing_emails_opened", "weight": 0.20, "transform": lambda x: min(x / 10.0, 1.0)},
{"key": "posthog_session_count", "weight": 0.20, "transform": lambda x: min(x / 5.0, 1.0)}
],
ability_config=[
{"key": "posthog_onboarding_steps_completed", "weight": 0.30, "transform": lambda x: min(x / 5.0, 1.0)},
{"key": "posthog_session_count", "weight": 0.30, "transform": lambda x: min(x / 10.0, 1.0)},
{"key": "behavior_complexity", "weight": 0.40, "transform": lambda x: 1 - (min(x, 5) / 5.0)}
]
)

print("✅ ValtheraTool successfully initialized for LangChain integration!")
API 參考:ChatOpenAI

langchain-valthera 整合讓您可以評估使用者行為,並決定互動的最佳行動方案,確保互動在您的 LangChain 應用程式中既即時又相關。


此頁面是否對您有幫助?