跳到主要內容
Open In ColabOpen on GitHub

Rememberizer

Rememberizer 是由 SkyDeck AI Inc. 創建的 AI 應用知識增強服務。

本筆記本展示如何從 Rememberizer 檢索文件到下游使用的 Document 格式。

準備

您將需要一個 API 金鑰:在 https://rememberizer.ai 建立通用知識後即可取得。取得 API 金鑰後,您必須將其設定為環境變數 REMEMBERIZER_API_KEY,或在初始化 RememberizerRetriever 時以 rememberizer_api_key 傳遞。

RememberizerRetriever 具有以下引數

  • 選填引數 top_k_results:預設值 = 10。使用它來限制傳回的文件數量。
  • 選填引數 rememberizer_api_key:如果您未設定環境變數 REMEMBERIZER_API_KEY,則為必填。

get_relevant_documents() 具有一個引數 query:用於在 Rememberizer.ai 的通用知識中尋找文件的自由文本。

範例

基本用法

# Setup API key
from getpass import getpass

REMEMBERIZER_API_KEY = getpass()
import os

from langchain_community.retrievers import RememberizerRetriever

os.environ["REMEMBERIZER_API_KEY"] = REMEMBERIZER_API_KEY
retriever = RememberizerRetriever(top_k_results=5)
docs = retriever.get_relevant_documents(query="How does Large Language Models works?")
docs[0].metadata  # meta-information of the Document
{'id': 13646493,
'document_id': '17s3LlMbpkTk0ikvGwV0iLMCj-MNubIaP',
'name': 'What is a large language model (LLM)_ _ Cloudflare.pdf',
'type': 'application/pdf',
'path': '/langchain/What is a large language model (LLM)_ _ Cloudflare.pdf',
'url': 'https://drive.google.com/file/d/17s3LlMbpkTk0ikvGwV0iLMCj-MNubIaP/view',
'size': 337089,
'created_time': '',
'modified_time': '',
'indexed_on': '2024-04-04T03:36:28.886170Z',
'integration': {'id': 347, 'integration_type': 'google_drive'}}
print(docs[0].page_content[:400])  # a content of the Document
before, or contextualized in new ways. on some level they " understand " semantics in that they can associate words and concepts by their meaning, having seen them grouped together in that way millions or billions of times. how developers can quickly start building their own llms to build llm applications, developers need easy access to multiple data sets, and they need places for those data sets

在鏈中使用

OPENAI_API_KEY = getpass()
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI

model = ChatOpenAI(model_name="gpt-3.5-turbo")
qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)
questions = [
"What is RAG?",
"How does Large Language Models works?",
]
chat_history = []

for question in questions:
result = qa.invoke({"question": question, "chat_history": chat_history})
chat_history.append((question, result["answer"]))
print(f"-> **Question**: {question} \n")
print(f"**Answer**: {result['answer']} \n")
-> **Question**: What is RAG? 

**Answer**: RAG stands for Retrieval-Augmented Generation. It is an AI framework that retrieves facts from an external knowledge base to enhance the responses generated by Large Language Models (LLMs) by providing up-to-date and accurate information. This framework helps users understand the generative process of LLMs and ensures that the model has access to reliable information sources.

-> **Question**: How does Large Language Models works?

**Answer**: Large Language Models (LLMs) work by analyzing massive data sets of language to comprehend and generate human language text. They are built on machine learning, specifically deep learning, which involves training a program to recognize features of data without human intervention. LLMs use neural networks, specifically transformer models, to understand context in human language, making them better at interpreting language even in vague or new contexts. Developers can quickly start building their own LLMs by accessing multiple data sets and using services like Cloudflare's Vectorize and Cloudflare Workers AI platform.

此頁面是否對您有幫助?