Astra DB (Cassandra)
DataStax Astra DB 是一個以
Cassandra
為基礎建構的無伺服器、具備向量功能的資料庫,並透過易於使用的 JSON API 方便地提供使用。
在逐步解說中,我們將示範搭配 Astra DB
向量儲存庫的 SelfQueryRetriever
。
建立 Astra DB 向量儲存庫
首先,我們會想要建立一個 Astra DB VectorStore 並使用一些資料來初始化它。我們建立了一個包含電影摘要的小型示範文件集。
注意:自我查詢檢索器需要您安裝 lark
(pip install lark
)。我們也需要 astrapy
套件。
%pip install --upgrade --quiet lark astrapy langchain-openai
我們想要使用 OpenAIEmbeddings
,因此我們必須取得 OpenAI API 金鑰。
import os
from getpass import getpass
from langchain_openai.embeddings import OpenAIEmbeddings
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass("OpenAI API Key:")
embeddings = OpenAIEmbeddings()
API 參考:OpenAIEmbeddings
建立 Astra DB VectorStore
- API 端點看起來像
https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com
- Token 看起來像
AstraCS:6gBhNmsk135....
ASTRA_DB_API_ENDPOINT = input("ASTRA_DB_API_ENDPOINT = ")
ASTRA_DB_APPLICATION_TOKEN = getpass("ASTRA_DB_APPLICATION_TOKEN = ")
from langchain_community.vectorstores import AstraDB
from langchain_core.documents import Document
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
"rating": 9.9,
},
),
]
vectorstore = AstraDB.from_documents(
docs,
embeddings,
collection_name="astra_self_query_demo",
api_endpoint=ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
建立我們的自我查詢檢索器
現在我們可以實例化我們的檢索器。若要執行此操作,我們需要預先提供一些關於我們的文件支援的中繼資料欄位資訊,以及文件內容的簡短描述。
from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
測試它
現在我們可以嘗試實際使用我們的檢索器!
# This example only specifies a relevant query
retriever.invoke("What are some movies about dinosaurs?")
# This example specifies a filter
retriever.invoke("I want to watch a movie rated higher than 8.5")
# This example only specifies a query and a filter
retriever.invoke("Has Greta Gerwig directed any movies about women")
# This example specifies a composite filter
retriever.invoke("What's a highly rated (above 8.5), science fiction movie ?")
# This example specifies a query and composite filter
retriever.invoke(
"What's a movie about toys after 1990 but before 2005, and is animated"
)
篩選 k
我們也可以使用自我查詢檢索器來指定 k
:要提取的文件數量。
我們可以透過將 enable_limit=True
傳遞給建構函式來完成此操作。
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
verbose=True,
enable_limit=True,
)
# This example only specifies a relevant query
retriever.invoke("What are two movies about dinosaurs?")
清除
如果您想要從您的 Astra DB 執行個體中完全刪除集合,請執行此操作。
(您將遺失儲存在其中的資料。)
vectorstore.delete_collection()