跳至主要內容
Open In ColabOpen on GitHub

MongoDB Atlas

MongoDB Atlas 是一個文件資料庫,可用作向量資料庫。

在逐步解說中,我們將示範搭配 MongoDB Atlas 向量儲存區的 SelfQueryRetriever

建立 MongoDB Atlas 向量儲存區

首先,我們會想要建立 MongoDB Atlas VectorStore,並使用一些資料來植入它。我們建立了一小組示範文件,其中包含電影摘要。

注意:自我查詢檢索器需要您安裝 lark (pip install lark)。我們也需要 pymongo 套件。

%pip install --upgrade --quiet  lark pymongo

我們要使用 OpenAIEmbeddings,因此我們必須取得 OpenAI API 金鑰。

import os

OPENAI_API_KEY = "Use your OpenAI key"

os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from pymongo import MongoClient

CONNECTION_STRING = "Use your MongoDB Atlas connection string"
DB_NAME = "Name of your MongoDB Atlas database"
COLLECTION_NAME = "Name of your collection in the database"
INDEX_NAME = "Name of a search index defined on the collection"

MongoClient = MongoClient(CONNECTION_STRING)
collection = MongoClient[DB_NAME][COLLECTION_NAME]

embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "action"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "genre": "thriller", "rating": 8.2},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "rating": 8.3, "genre": "drama"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={"year": 1979, "rating": 9.9, "genre": "science fiction"},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "genre": "thriller", "rating": 9.0},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated", "rating": 9.3},
),
]

vectorstore = MongoDBAtlasVectorSearch.from_documents(
docs,
embeddings,
collection=collection,
index_name=INDEX_NAME,
)

現在,讓我們在您的叢集上建立向量搜尋索引。在以下範例中,embedding 是包含嵌入向量的欄位名稱。請參閱文件,以取得關於如何定義 Atlas Vector Search 索引的更多詳細資訊。您可以將索引命名為 {COLLECTION_NAME},並在命名空間 {DB_NAME}.{COLLECTION_NAME} 上建立索引。最後,在 MongoDB Atlas 上的 JSON 編輯器中寫入以下定義

{
"mappings": {
"dynamic": true,
"fields": {
"embedding": {
"dimensions": 1536,
"similarity": "cosine",
"type": "knnVector"
},
"genre": {
"type": "token"
},
"ratings": {
"type": "number"
},
"year": {
"type": "number"
}
}
}
}

建立我們的自我查詢檢索器

現在我們可以實例化我們的檢索器。為此,我們需要預先提供一些關於我們的文件支援的中繼資料欄位資訊,以及文件內容的簡短描述。

from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

測試它

現在我們可以嘗試實際使用我們的檢索器!

# This example only specifies a relevant query
retriever.invoke("What are some movies about dinosaurs")
# This example specifies a filter
retriever.invoke("What are some highly rated movies (above 9)?")
# This example only specifies a query and a filter
retriever.invoke("I want to watch a movie about toys rated higher than 9")
# This example specifies a composite filter
retriever.invoke("What's a highly rated (above or equal 9) thriller film?")
# This example specifies a query and composite filter
retriever.invoke(
"What's a movie after 1990 but before 2005 that's all about dinosaurs, \
and preferably has a lot of action"
)

篩選 k

我們也可以使用自我查詢檢索器來指定 k:要提取的文件數量。

我們可以透過將 enable_limit=True 傳遞給建構函式來做到這一點。

retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
verbose=True,
enable_limit=True,
)
# This example only specifies a relevant query
retriever.invoke("What are two movies about dinosaurs?")

此頁面是否對您有幫助?