跳到主要內容
Open In ColabOpen on GitHub

OpenSearch

OpenSearch 是一個可擴展、靈活且可延伸的開源軟體套件,適用於搜尋、分析和可觀測性應用程式,並以 Apache 2.0 授權條款授權。OpenSearch 是一個基於 Apache Lucene 的分散式搜尋和分析引擎。

在本筆記本中,我們將示範如何使用 SelfQueryRetriever 和 OpenSearch 向量儲存庫。

建立 OpenSearch 向量儲存庫

首先,我們會想要建立一個 OpenSearch 向量儲存庫,並用一些資料來初始化它。我們建立了一個小型的示範文件集,其中包含電影摘要。

注意: 自查詢檢索器需要您安裝 lark (pip install lark)。我們也需要 opensearch-py 套件。

%pip install --upgrade --quiet  lark opensearch-py
import getpass
import os

from langchain_community.vectorstores import OpenSearchVectorSearch
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

embeddings = OpenAIEmbeddings()
OpenAI API Key: ········
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"rating": 9.9,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
},
),
]
vectorstore = OpenSearchVectorSearch.from_documents(
docs,
embeddings,
index_name="opensearch-self-query-demo",
opensearch_url="https://127.0.0.1:9200",
)

建立我們的自查詢檢索器

現在我們可以實例化我們的檢索器。為此,我們需要預先提供一些關於我們的文件支援的中繼資料欄位以及文件內容的簡短描述。

from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

測試一下

現在我們可以試著實際使用我們的檢索器了!

# This example only specifies a relevant query
retriever.invoke("What are some movies about dinosaurs")
query='dinosaur' filter=None limit=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example only specifies a filter
retriever.invoke("I want to watch a movie rated higher than 8.5")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]
# This example specifies a query and a filter
retriever.invoke("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
# This example specifies a composite filter
retriever.invoke("What's a highly rated (above 8.5) science fiction film?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.CONTAIN: 'contain'>, attribute='genre', value='science fiction')]) limit=None
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]

篩選 k

我們也可以使用自查詢檢索器來指定 k:要提取的文件數量。

我們可以透過將 enable_limit=True 傳遞給建構函式來做到這一點。

retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
# This example only specifies a relevant query
retriever.invoke("what are two movies about dinosaurs")
query='dinosaur' filter=None limit=2
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]

複雜查詢的實際應用!

我們已經嘗試了一些簡單的查詢,但更複雜的查詢呢?讓我們嘗試一些更複雜的查詢,以充分利用 OpenSearch 的強大功能。

retriever.invoke(
"what animated or comedy movies have been released in the last 30 years about animated toys?"
)
query='animated toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Operation(operator=<Operator.OR: 'or'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='comedy')]), Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='year', value=1990)]) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]
vectorstore.client.indices.delete(index="opensearch-self-query-demo")
{'acknowledged': True}

此頁面是否對您有幫助?