Azure AI Search
Azure AI Search(先前稱為 Azure Search
和 Azure Cognitive Search
)是一項雲端搜尋服務,為開發人員提供基礎結構、API 和工具,以大規模進行向量、關鍵字和混合查詢的資訊檢索。
您需要使用 pip install -qU langchain-community
安裝 langchain-community
才能使用此整合
安裝 Azure AI Search SDK
使用 azure-search-documents 套件 11.4.0 或更新版本。
%pip install --upgrade --quiet azure-search-documents
%pip install --upgrade --quiet azure-identity
匯入所需的函式庫
假設使用 OpenAIEmbeddings
,但如果您使用的是 Azure OpenAI,請改為匯入 AzureOpenAIEmbeddings
。
import os
from langchain_community.vectorstores.azuresearch import AzureSearch
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
設定 OpenAI 設定
設定 OpenAI 提供者的變數。您需要一個 OpenAI 帳戶或一個 Azure OpenAI 帳戶來產生嵌入。
# Option 1: use an OpenAI account
openai_api_key: str = "PLACEHOLDER FOR YOUR API KEY"
openai_api_version: str = "2023-05-15"
model: str = "text-embedding-ada-002"
# Option 2: use an Azure OpenAI account with a deployment of an embedding model
azure_endpoint: str = "PLACEHOLDER FOR YOUR AZURE OPENAI ENDPOINT"
azure_openai_api_key: str = "PLACEHOLDER FOR YOUR AZURE OPENAI KEY"
azure_openai_api_version: str = "2023-05-15"
azure_deployment: str = "text-embedding-ada-002"
設定向量儲存設定
您需要一個 Azure 訂閱和 Azure AI Search 服務才能使用此向量儲存整合。無成本版本適用於小型和有限的工作負載。
設定 Azure AI Search URL 和管理 API 金鑰的變數。您可以從 Azure 入口網站取得這些變數。
vector_store_address: str = "YOUR_AZURE_SEARCH_ENDPOINT"
vector_store_password: str = "YOUR_AZURE_SEARCH_ADMIN_KEY"
建立嵌入和向量儲存執行個體
建立 OpenAIEmbeddings 和 AzureSearch 類別的執行個體。完成此步驟後,您的 Azure AI Search 資源上應該會有一個空的搜尋索引。整合模組提供預設架構。
# Option 1: Use OpenAIEmbeddings with OpenAI account
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(
openai_api_key=openai_api_key, openai_api_version=openai_api_version, model=model
)
# Option 2: Use AzureOpenAIEmbeddings with an Azure account
embeddings: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings(
azure_deployment=azure_deployment,
openai_api_version=azure_openai_api_version,
azure_endpoint=azure_endpoint,
api_key=azure_openai_api_key,
)
建立向量儲存執行個體
使用上述的嵌入建立 AzureSearch 類別的執行個體
index_name: str = "langchain-vector-demo"
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
)
# Specify additional properties for the Azure client such as the following https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
# Configure max retries for the Azure client
additional_search_client_options={"retry_total": 4},
)
將文字和嵌入插入向量儲存
此步驟會載入、分塊和向量化範例文件,然後將內容索引到 Azure AI Search 上的搜尋索引中。
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt", encoding="utf-8")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
vector_store.add_documents(documents=docs)
['M2U1OGM4YzAtYjMxYS00Nzk5LTlhNDgtZTc3MGVkNTg1Mjc0',
'N2I2MGNiZDEtNDdmZS00YWNiLWJhYTYtYWEzMmFiYzU1ZjZm',
'YWFmNDViNTQtZTc4MS00MTdjLTkzZjQtYTJkNmY1MDU4Yzll',
'MjgwY2ExZDctYTUxYi00NjE4LTkxMjctZDA1NDQ1MzU4NmY1',
'NGE4NzhkNTAtZWYxOC00ZmI5LTg0MTItZDQ1NzMxMWVmMTIz',
'MTYwMWU3YjAtZDIzOC00NTYwLTgwMmEtNDI1NzA2MWVhMDYz',
'NGM5N2NlZjgtMTc5Ny00OGEzLWI5YTgtNDFiZWE2MjBlMzA0',
'OWQ4M2MyMTYtMmRkNi00ZDUxLWI0MDktOGE2NjMxNDFhYzFm',
'YWZmZGJkOTAtOGM3My00MmNiLTg5OWUtZGMwMDQwYTk1N2Vj',
'YTc3MTI2OTktYmVkMi00ZGU4LTgyNmUtNTY1YzZjMDg2YWI3',
'MTQwMmVlYjEtNDI0MS00N2E0LWEyN2ItZjhhYWU0YjllMjRk',
'NjJjYWY4ZjctMzgyNi00Y2I5LTkwY2UtZjRkMjJhNDQxYTFk',
'M2ZiM2NiYTMtM2ZiMS00YWJkLWE3ZmQtNDZiODcyOTMyYWYx',
'MzNmZTNkMWYtMjNmYS00Y2NmLTg3ZjQtYTZjOWM1YmJhZTRk',
'ZDY3MDc1NzYtY2YzZS00ZjExLWEyMjAtODhiYTRmNDUzMTBi',
'ZGIyYzA4NzUtZGM2Ni00MDUwLWEzZjYtNTg3MDYyOWQ5MWQy',
'NTA0MjBhMzYtOTYzMi00MDQ2LWExYWQtMzNiN2I4ODM4ZGZl',
'OTdjYzU2NGUtNWZjNC00N2ZmLWExMjQtNjhkYmZkODg4MTY3',
'OThhMWZmMjgtM2EzYS00OWZkLTk1NGEtZTdkNmRjNWYxYmVh',
'ZGVjMTQ0NzctNDVmZC00ZWY4LTg4N2EtMDQ1NWYxNWM5NDVh',
'MjRlYzE4YzItZTMxNy00OGY3LThmM2YtMjM0YmRhYTVmOGY3',
'MWU0NDA3ZDQtZDE4MS00OWMyLTlmMzktZjdkYzZhZmUwYWM3',
'ZGM2ZDhhY2MtM2NkNi00MzZhLWJmNTEtMmYzNjEwMzE3NmZl',
'YjBmMjkyZTItYTNlZC00MmY2LThiMzYtMmUxY2MyNDlhNGUw',
'OThmYTQ0YzEtNjk0MC00NWIyLWE1ZDQtNTI2MTZjN2NlODcw',
'NDdlOGU1ZGQtZTVkMi00M2MyLWExN2YtOTc2ODk3OWJmNmQw',
'MDVmZGNkYTUtNWI2OS00YjllLTk0YTItZDRmNWQxMWU3OTVj',
'YWFlNTVmNjMtMDZlNy00NmE5LWI0ODUtZTI3ZTFmZWRmNzU0',
'MmIzOTkxODQtODYxMi00YWM2LWFjY2YtNjRmMmEyM2JlNzMw',
'ZmI1NDhhNWItZWY0ZS00NTNhLWEyNDEtMTE2OWYyMjc4YTU2',
'YTllYTc5OTgtMzJiNC00ZjZjLWJiMzUtNWVhYzFjYzgxMjU2',
'ODZlZWUyOTctOGY4OS00ZjA3LWIyYTUtNDVlNDUyN2E4ZDFk',
'Y2M0MWRlM2YtZDU4Ny00MjZkLWE5NzgtZmRkMTNhZDg2YjEy',
'MDNjZWQ2ODEtMWZiMy00OTZjLTk3MzAtZjE4YjIzNWVhNTE1',
'OTE1NDY0NzMtODNkZS00MTk4LTk4NWQtZGVmYjQ2YjFlY2Q0',
'ZTgwYWQwMjEtN2ZlOS00NDk2LWIxNzUtNjk2ODE3N2U0Yzlj',
'ZDkxOTgzMGUtZGExMC00Yzg0LWJjMGItOWQ2ZmUwNWUwOGJj',
'ZGViMGI2NDEtZDdlNC00YjhiLTk0MDUtYjEyOTVlMGU1Y2I2',
'ODliZTYzZTctZjdlZS00YjBjLWFiZmYtMDJmNjQ0YjU3ZDcy',
'MDFjZGI1NzUtOTc0Ni00NWNmLThhYzYtYzRlZThkZjMwM2Vl',
'ZjY2ZmRiN2EtZWVhNS00ODViLTk4YjYtYjQ2Zjc4MDdkYjhk',
'ZTQ3NDMwODEtMTQwMy00NDFkLWJhZDQtM2UxN2RkOTU1MTdl']
執行向量相似性搜尋
使用 similarity_search() 方法執行純向量相似性搜尋
# Perform a similarity search
docs = vector_store.similarity_search(
query="What did the president say about Ketanji Brown Jackson",
k=3,
search_type="similarity",
)
print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.
Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
執行具有相關性分數的向量相似性搜尋
使用 similarity_search_with_relevance_scores() 方法執行純向量相似性搜尋。不符合閾值要求的查詢將被排除。
docs_and_scores = vector_store.similarity_search_with_relevance_scores(
query="What did the president say about Ketanji Brown Jackson",
k=4,
score_threshold=0.80,
)
from pprint import pprint
pprint(docs_and_scores)
[(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../how_to/state_of_the_union.txt'}),
0.84402436),
(Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../how_to/state_of_the_union.txt'}),
0.82128483),
(Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../how_to/state_of_the_union.txt'}),
0.8151042),
(Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n\nThat ends on my watch. \n\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n\nLet’s pass the Paycheck Fairness Act and paid leave. \n\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../how_to/state_of_the_union.txt'}),
0.8148832)]
執行混合搜尋
使用 search_type 或 hybrid_search() 方法執行混合搜尋。向量和非向量文字欄位會並行查詢,結果會合併,並傳回統一結果集中最符合的項目。
# Perform a hybrid search using the search_type parameter
docs = vector_store.similarity_search(
query="What did the president say about Ketanji Brown Jackson",
k=3,
search_type="hybrid",
)
print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.
Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
# Perform a hybrid search using the hybrid_search method
docs = vector_store.hybrid_search(
query="What did the president say about Ketanji Brown Jackson", k=3
)
print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.
Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
自訂架構和查詢
本節將示範如何使用自訂架構取代預設架構。
建立具有自訂可篩選欄位的新索引
此架構顯示欄位定義。它是預設架構,加上幾個新的欄位屬性為可篩選。因為它使用預設向量配置,所以您不會在此處看到向量配置或向量配置檔覆寫。預設向量配置檔的名稱為 "myHnswProfile",它使用 Hierarchical Navigable Small World (HNSW) 的向量配置來索引和查詢 content_vector 欄位。
此步驟中沒有此架構的資料。當您執行儲存格時,您應該在 Azure AI Search 上取得一個空的索引。
from azure.search.documents.indexes.models import (
ScoringProfile,
SearchableField,
SearchField,
SearchFieldDataType,
SimpleField,
TextWeights,
)
# Replace OpenAIEmbeddings with AzureOpenAIEmbeddings if Azure OpenAI is your provider.
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(
openai_api_key=openai_api_key, openai_api_version=openai_api_version, model=model
)
embedding_function = embeddings.embed_query
fields = [
SimpleField(
name="id",
type=SearchFieldDataType.String,
key=True,
filterable=True,
),
SearchableField(
name="content",
type=SearchFieldDataType.String,
searchable=True,
),
SearchField(
name="content_vector",
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=len(embedding_function("Text")),
vector_search_profile_name="myHnswProfile",
),
SearchableField(
name="metadata",
type=SearchFieldDataType.String,
searchable=True,
),
# Additional field to store the title
SearchableField(
name="title",
type=SearchFieldDataType.String,
searchable=True,
),
# Additional field for filtering on document source
SimpleField(
name="source",
type=SearchFieldDataType.String,
filterable=True,
),
]
index_name: str = "langchain-vector-demo-custom"
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embedding_function,
fields=fields,
)
新增資料並執行包含篩選器的查詢
此範例根據自定義架構將資料新增到向量儲存區。它將文字載入到標題和來源欄位中。來源欄位是可篩選的。本節中的範例查詢會根據來源欄位中的內容篩選結果。
# Data in the metadata dictionary with a corresponding field in the index will be added to the index.
# In this example, the metadata dictionary contains a title, a source, and a random field.
# The title and the source are added to the index as separate fields, but the random value is ignored because it's not defined in the schema.
# The random field is only stored in the metadata field.
vector_store.add_texts(
["Test 1", "Test 2", "Test 3"],
[
{"title": "Title 1", "source": "A", "random": "10290"},
{"title": "Title 2", "source": "A", "random": "48392"},
{"title": "Title 3", "source": "B", "random": "32893"},
],
)
['ZjhmMTg0NTEtMjgwNC00N2M0LWFiZGEtMDllMGU1Mzk1NWRm',
'MzQwYWUwZDEtNDJkZC00MzgzLWIwMzItYzMwOGZkYTRiZGRi',
'ZjFmOWVlYTQtODRiMC00YTY3LTk2YjUtMzY1NDBjNjY5ZmQ2']
res = vector_store.similarity_search(query="Test 3 source1", k=3, search_type="hybrid")
res
[Document(page_content='Test 3', metadata={'title': 'Title 3', 'source': 'B', 'random': '32893'}),
Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'A', 'random': '10290'}),
Document(page_content='Test 2', metadata={'title': 'Title 2', 'source': 'A', 'random': '48392'})]
res = vector_store.similarity_search(
query="Test 3 source1", k=3, search_type="hybrid", filters="source eq 'A'"
)
res
[Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'A', 'random': '10290'}),
Document(page_content='Test 2', metadata={'title': 'Title 2', 'source': 'A', 'random': '48392'})]
建立具有評分設定檔的新索引
這是另一個包含評分設定檔定義的自定義架構。評分設定檔用於非向量內容的相關性調整,這在混合搜尋場景中很有用。
from azure.search.documents.indexes.models import (
FreshnessScoringFunction,
FreshnessScoringParameters,
ScoringProfile,
SearchableField,
SearchField,
SearchFieldDataType,
SimpleField,
TextWeights,
)
# Replace OpenAIEmbeddings with AzureOpenAIEmbeddings if Azure OpenAI is your provider.
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(
openai_api_key=openai_api_key, openai_api_version=openai_api_version, model=model
)
embedding_function = embeddings.embed_query
fields = [
SimpleField(
name="id",
type=SearchFieldDataType.String,
key=True,
filterable=True,
),
SearchableField(
name="content",
type=SearchFieldDataType.String,
searchable=True,
),
SearchField(
name="content_vector",
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=len(embedding_function("Text")),
vector_search_profile_name="myHnswProfile",
),
SearchableField(
name="metadata",
type=SearchFieldDataType.String,
searchable=True,
),
# Additional field to store the title
SearchableField(
name="title",
type=SearchFieldDataType.String,
searchable=True,
),
# Additional field for filtering on document source
SimpleField(
name="source",
type=SearchFieldDataType.String,
filterable=True,
),
# Additional data field for last doc update
SimpleField(
name="last_update",
type=SearchFieldDataType.DateTimeOffset,
searchable=True,
filterable=True,
),
]
# Adding a custom scoring profile with a freshness function
sc_name = "scoring_profile"
sc = ScoringProfile(
name=sc_name,
text_weights=TextWeights(weights={"title": 5}),
function_aggregation="sum",
functions=[
FreshnessScoringFunction(
field_name="last_update",
boost=100,
parameters=FreshnessScoringParameters(boosting_duration="P2D"),
interpolation="linear",
)
],
)
index_name = "langchain-vector-demo-custom-scoring-profile"
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
fields=fields,
scoring_profiles=[sc],
default_scoring_profile=sc_name,
)
# Adding same data with different last_update to show Scoring Profile effect
from datetime import datetime, timedelta
today = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S-00:00")
yesterday = (datetime.utcnow() - timedelta(days=1)).strftime("%Y-%m-%dT%H:%M:%S-00:00")
one_month_ago = (datetime.utcnow() - timedelta(days=30)).strftime(
"%Y-%m-%dT%H:%M:%S-00:00"
)
vector_store.add_texts(
["Test 1", "Test 1", "Test 1"],
[
{
"title": "Title 1",
"source": "source1",
"random": "10290",
"last_update": today,
},
{
"title": "Title 1",
"source": "source1",
"random": "48392",
"last_update": yesterday,
},
{
"title": "Title 1",
"source": "source1",
"random": "32893",
"last_update": one_month_ago,
},
],
)
['NjUwNGQ5ZDUtMGVmMy00OGM4LWIxMGYtY2Y2MDFmMTQ0MjE5',
'NWFjN2YwY2UtOWQ4Yi00OTNhLTg2MGEtOWE0NGViZTVjOGRh',
'N2Y2NWUyZjctMDBjZC00OGY4LWJlZDEtNTcxYjQ1MmI1NjYx']
res = vector_store.similarity_search(query="Test 1", k=3, search_type="similarity")
res
[Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'source1', 'random': '32893', 'last_update': '2024-01-24T22:18:51-00:00'}),
Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'source1', 'random': '48392', 'last_update': '2024-02-22T22:18:51-00:00'}),
Document(page_content='Test 1', metadata={'title': 'Title 1', 'source': 'source1', 'random': '10290', 'last_update': '2024-02-23T22:18:51-00:00'})]