跳到主要內容

Timescale Vector (Postgres)

Timescale Vector 是適用於 AI 應用程式的 PostgreSQL++ 向量資料庫。

此筆記本展示如何使用 Postgres 向量資料庫 Timescale Vector。您將學習如何使用 TimescaleVector 進行 (1) 語義搜尋、(2) 基於時間的向量搜尋、(3) 自我查詢,以及 (4) 如何建立索引以加速查詢。

什麼是 Timescale Vector?

Timescale Vector 使您能夠在 PostgreSQL 中有效率地儲存和查詢數百萬個向量嵌入。

  • 透過 DiskANN 啟發的索引演算法,在 1 億多個向量上增強 pgvector,提供更快、更準確的相似性搜尋。
  • 透過自動的基於時間的分區和索引,實現快速的基於時間的向量搜尋。
  • 提供熟悉的 SQL 介面,用於查詢向量嵌入和關聯資料。

Timescale Vector 是適用於 AI 的雲端 PostgreSQL,可隨著您的需求從 POC 擴展到生產環境

  • 透過允許您在單一資料庫中儲存關聯元資料、向量嵌入和時間序列資料,簡化操作。
  • 受益於堅如磐石的 PostgreSQL 基礎,具有企業級功能,例如串流備份和複製、高可用性和行級安全性。
  • 透過企業級安全性和合規性,提供無憂的體驗。

如何存取 Timescale Vector

Timescale Vector 可在雲端 PostgreSQL 平台 Timescale 上使用。(目前沒有自架版本。)

LangChain 用戶可獲得 Timescale Vector 的 90 天免費試用。

  • 要開始使用,註冊 Timescale,建立一個新的資料庫並按照此筆記本進行操作!
  • 有關更多詳細資訊和效能基準,請參閱 Timescale Vector 解釋部落格
  • 有關在 Python 中使用 Timescale Vector 的更多詳細資訊,請參閱安裝說明

設定

請按照以下步驟準備好學習本教程。

# Pip install necessary packages
%pip install --upgrade --quiet timescale-vector
%pip install --upgrade --quiet langchain-openai langchain-community
%pip install --upgrade --quiet tiktoken

在此範例中,我們將使用 OpenAIEmbeddings,因此讓我們載入您的 OpenAI API 金鑰。

import os

# Run export OPENAI_API_KEY=sk-YOUR_OPENAI_API_KEY...
# Get openAI api key by reading local .env file
from dotenv import find_dotenv, load_dotenv

_ = load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
# Get the API key and save it as an environment variable
# import os
# import getpass
# os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

from typing import Tuple

接下來,我們將從 LangChain 匯入所需的 Python 函式庫和函式庫。請注意,我們匯入 timescale-vector 函式庫以及 TimescaleVector LangChain 向量儲存區。

from datetime import datetime, timedelta

from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders.json_loader import JSONLoader
from langchain_community.vectorstores.timescalevector import TimescaleVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

1. 使用歐幾里得距離(預設)的相似性搜尋

首先,我們將查看一個範例,說明如何對國情咨文演講進行相似性搜尋查詢,以找到與給定查詢句子最相似的句子。我們將使用 歐幾里得距離 作為我們的相似性指標。

# Load the text and split it into chunks
loader = TextLoader("../../../extras/modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

接下來,我們將載入 Timescale 資料庫的服務 URL。

如果您尚未註冊,請註冊 Timescale,並建立一個新的資料庫。

然後,要連接到您的 PostgreSQL 資料庫,您需要您的服務 URI,可以在備忘單或建立新資料庫後下載的 .env 檔案中找到。

URI 看起來會像這樣:postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require

# Timescale Vector needs the service url to your cloud database. You can see this as soon as you create the
# service in the cloud UI or in your credentials.sql file
SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]

# Specify directly if testing
# SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require"

# # You can get also it from an environment variables. We suggest using a .env file.
# import os
# SERVICE_URL = os.environ.get("TIMESCALE_SERVICE_URL", "")

接下來,我們建立一個 TimescaleVector 向量儲存區。我們指定一個集合名稱,這將是儲存我們資料的資料表名稱。

注意:在建立 TimescaleVector 的新實例時,TimescaleVector 模組將嘗試建立一個以集合名稱命名的資料表。因此,請確保集合名稱是唯一的(即它還不存在)。

# The TimescaleVector Module will create a table with the name of the collection.
COLLECTION_NAME = "state_of_the_union_test"

# Create a Timescale Vector instance from the collection of documents
db = TimescaleVector.from_documents(
embedding=embeddings,
documents=docs,
collection_name=COLLECTION_NAME,
service_url=SERVICE_URL,
)

現在我們已經載入了我們的資料,我們可以執行相似性搜尋。

query = "What did the president say about Ketanji Brown Jackson"
docs_with_score = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
--------------------------------------------------------------------------------
Score: 0.18443380687035138
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.

Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18452197313308139
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.

Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.21720781018594182
A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.

And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.

We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling.

We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers.

We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.

We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.21724902288621384
A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.

And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.

We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling.

We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers.

We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.

We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.
--------------------------------------------------------------------------------

將 Timescale Vector 用作檢索器

初始化 TimescaleVector 儲存區後,您可以將其用作檢索器

# Use TimescaleVector as a retriever
retriever = db.as_retriever()
print(retriever)
tags=['TimescaleVector', 'OpenAIEmbeddings'] metadata=None vectorstore=<langchain_community.vectorstores.timescalevector.TimescaleVector object at 0x10fc8d070> search_type='similarity' search_kwargs={}

讓我們看一個範例,說明如何將 Timescale Vector 用作 RetrievalQA 鏈和 stuff documents 鏈的檢索器。

在此範例中,我們將提出與上面相同的查詢,但這次我們將把從 Timescale Vector 返回的相關文件傳遞給 LLM,以用作回答我們問題的上下文。

首先,我們會建立我們的資料鏈(stuff chain)

# Initialize GPT3.5 model
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0.1, model="gpt-3.5-turbo-16k")

# Initialize a RetrievalQA class from a stuff chain
from langchain.chains import RetrievalQA

qa_stuff = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
verbose=True,
)
API 參考:ChatOpenAI | RetrievalQA
query = "What did the president say about Ketanji Brown Jackson?"
response = qa_stuff.run(query)


> Entering new RetrievalQA chain...

> Finished chain.
print(response)
The President said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, who is one of our nation's top legal minds and will continue Justice Breyer's legacy of excellence. He also mentioned that since her nomination, she has received a broad range of support from various groups, including the Fraternal Order of Police and former judges appointed by Democrats and Republicans.

2. 具有時間過濾功能的相似度搜尋

Timescale Vector 的一個主要用例是有效率的基於時間的向量搜尋。Timescale Vector 透過按時間自動分割向量(和相關的元數據)來實現這一點。這讓您可以透過與查詢向量的相似度和時間來有效地查詢向量。

基於時間的向量搜尋功能對於以下應用非常有用:

  • 儲存和檢索 LLM 回應歷史記錄(例如,聊天機器人)
  • 尋找與查詢向量相似的最新嵌入(例如,近期新聞)。
  • 將相似度搜尋限制在相關的時間範圍內(例如,詢問有關知識庫的基於時間的問題)

為了說明如何使用 TimescaleVector 的基於時間的向量搜尋功能,我們將詢問有關 TimescaleDB 的 git log 歷史記錄的問題。 我們將說明如何添加具有基於時間的 uuid 的文件,以及如何執行具有時間範圍過濾器的相似度搜尋。

從 git log JSON 中提取內容和元數據

首先,讓我們將 git log 數據加載到 PostgreSQL 數據庫中名為 timescale_commits 的新集合中。

我們將定義一個輔助函數,根據時間戳為文檔和相關的向量嵌入建立一個 uuid。 我們將使用此函數為每個 git log 條目建立一個 uuid。

重要提示:如果您正在處理文檔並希望將目前日期和時間與用於基於時間的搜尋的向量關聯,則可以跳過此步驟。 預設情況下,當導入文檔時,將自動產生 uuid。

from timescale_vector import client


# Function to take in a date string in the past and return a uuid v1
def create_uuid(date_string: str):
if date_string is None:
return None
time_format = "%a %b %d %H:%M:%S %Y %z"
datetime_obj = datetime.strptime(date_string, time_format)
uuid = client.uuid_from_time(datetime_obj)
return str(uuid)

接下來,我們將定義一個元數據函數,用於從 JSON 記錄中提取相關的元數據。 我們會將此函數傳遞給 JSONLoader。 有關更多詳細信息,請參閱 JSON 文檔加載器文檔

# Helper function to split name and email given an author string consisting of Name Lastname <email>
def split_name(input_string: str) -> Tuple[str, str]:
if input_string is None:
return None, None
start = input_string.find("<")
end = input_string.find(">")
name = input_string[:start].strip()
email = input_string[start + 1 : end].strip()
return name, email


# Helper function to transform a date string into a timestamp_tz string
def create_date(input_string: str) -> datetime:
if input_string is None:
return None
# Define a dictionary to map month abbreviations to their numerical equivalents
month_dict = {
"Jan": "01",
"Feb": "02",
"Mar": "03",
"Apr": "04",
"May": "05",
"Jun": "06",
"Jul": "07",
"Aug": "08",
"Sep": "09",
"Oct": "10",
"Nov": "11",
"Dec": "12",
}

# Split the input string into its components
components = input_string.split()
# Extract relevant information
day = components[2]
month = month_dict[components[1]]
year = components[4]
time = components[3]
timezone_offset_minutes = int(components[5]) # Convert the offset to minutes
timezone_hours = timezone_offset_minutes // 60 # Calculate the hours
timezone_minutes = timezone_offset_minutes % 60 # Calculate the remaining minutes
# Create a formatted string for the timestamptz in PostgreSQL format
timestamp_tz_str = (
f"{year}-{month}-{day} {time}+{timezone_hours:02}{timezone_minutes:02}"
)
return timestamp_tz_str


# Metadata extraction function to extract metadata from a JSON record
def extract_metadata(record: dict, metadata: dict) -> dict:
record_name, record_email = split_name(record["author"])
metadata["id"] = create_uuid(record["date"])
metadata["date"] = create_date(record["date"])
metadata["author_name"] = record_name
metadata["author_email"] = record_email
metadata["commit_hash"] = record["commit"]
return metadata

接下來,您需要下載範例資料集並將其放置在本筆記本相同的目錄中。

您可以使用以下命令

# Download the file using curl and save it as commit_history.csv
# Note: Execute this command in your terminal, in the same directory as the notebook
!curl -O https://s3.amazonaws.com/assets.timescale.com/ai/ts_git_log.json

最後,我們可以初始化 JSON 加載器來解析 JSON 記錄。 為了簡單起見,我們還會移除空記錄。

# Define path to the JSON file relative to this notebook
# Change this to the path to your JSON file
FILE_PATH = "../../../../../ts_git_log.json"

# Load data from JSON file and extract metadata
loader = JSONLoader(
file_path=FILE_PATH,
jq_schema=".commit_history[]",
text_content=False,
metadata_func=extract_metadata,
)
documents = loader.load()

# Remove documents with None dates
documents = [doc for doc in documents if doc.metadata["date"] is not None]
print(documents[0])
page_content='{"commit": "44e41c12ab25e36c202f58e068ced262eadc8d16", "author": "Lakshmi Narayanan Sreethar<lakshmi@timescale.com>", "date": "Tue Sep 5 21:03:21 2023 +0530", "change summary": "Fix segfault in set_integer_now_func", "change details": "When an invalid function oid is passed to set_integer_now_func, it finds out that the function oid is invalid but before throwing the error, it calls ReleaseSysCache on an invalid tuple causing a segfault. Fixed that by removing the invalid call to ReleaseSysCache.  Fixes #6037 "}' metadata={'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/ts_git_log.json', 'seq_num': 1, 'id': '8b407680-4c01-11ee-96a6-b82284ddccc6', 'date': '2023-09-5 21:03:21+0850', 'author_name': 'Lakshmi Narayanan Sreethar', 'author_email': 'lakshmi@timescale.com', 'commit_hash': '44e41c12ab25e36c202f58e068ced262eadc8d16'}

將文檔和元數據載入到 TimescaleVector 向量資料庫

現在我們已經準備好文檔,讓我們處理它們並將它們連同它們的向量嵌入表示形式載入到我們的 TimescaleVector 向量資料庫中。

由於這是一個演示,我們只會載入前 500 條記錄。 實際上,您可以載入任意數量的記錄。

NUM_RECORDS = 500
documents = documents[:NUM_RECORDS]

然後,我們使用 CharacterTextSplitter 將文檔拆分為更小的塊,如果需要,以便於嵌入。 請注意,此拆分過程會保留每個文檔的元數據。

# Split the documents into chunks for embedding
text_splitter = CharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
docs = text_splitter.split_documents(documents)

接下來,我們將從我們完成預處理的文檔集合中建立一個 Timescale Vector 實例。

首先,我們將定義一個集合名稱,這將是我們在 PostgreSQL 數據庫中的表名稱。

我們還將定義一個時間增量,我們將其傳遞給 time_partition_interval 參數,該參數將用作按時間分割數據的間隔。 每個分割區將包含指定時間長度的數據。 為了簡單起見,我們將使用 7 天,但您可以選擇任何對您的用例有意義的值 - 例如,如果您經常查詢最近的向量,您可能想要使用較小時間增量(例如 1 天),或者如果您查詢跨越十年以上的向量,那麼您可能想要使用較大的時間增量(例如 6 個月或 1 年)。

最後,我們將建立 TimescaleVector 實例。 我們指定 ids 參數為我們在上述預處理步驟中建立的元數據中的 uuid 欄位。 我們這樣做是因為我們希望 uuid 的時間部分反映過去的日期(即,進行提交的時間)。 但是,如果我們希望將目前日期和時間與我們的文檔關聯,我們可以移除 id 參數,並且將自動使用目前日期和時間建立 uuid。

# Define collection name
COLLECTION_NAME = "timescale_commits"
embeddings = OpenAIEmbeddings()

# Create a Timescale Vector instance from the collection of documents
db = TimescaleVector.from_documents(
embedding=embeddings,
ids=[doc.metadata["id"] for doc in docs],
documents=docs,
collection_name=COLLECTION_NAME,
service_url=SERVICE_URL,
time_partition_interval=timedelta(days=7),
)

按時間和相似度查詢向量

現在我們已經將文檔載入到 TimescaleVector 中,我們可以按時間和相似度查詢它們。

TimescaleVector 提供了多種方法,用於透過執行具有基於時間的過濾的相似度搜尋來查詢向量。

讓我們看看下面的每種方法

# Time filter variables
start_dt = datetime(2023, 8, 1, 22, 10, 35) # Start date = 1 August 2023, 22:10:35
end_dt = datetime(2023, 8, 30, 22, 10, 35) # End date = 30 August 2023, 22:10:35
td = timedelta(days=7) # Time delta = 7 days

query = "What's new with TimescaleDB functions?"

方法 1:在提供的開始日期和結束日期內進行過濾。

# Method 1: Query for vectors between start_date and end_date
docs_with_score = db.similarity_search_with_score(
query, start_date=start_dt, end_date=end_dt
)

for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print("Date: ", doc.metadata["date"])
print(doc.page_content)
print("-" * 80)
--------------------------------------------------------------------------------
Score: 0.17488396167755127
Date: 2023-08-29 18:13:24+0320
{"commit": " e4facda540286b0affba47ccc63959fefe2a7b26", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 29 18:13:24 2023 +0200", "change summary": "Add compatibility layer for _timescaledb_internal functions", "change details": "With timescaledb 2.12 all the functions present in _timescaledb_internal were moved into the _timescaledb_functions schema to improve schema security. This patch adds a compatibility layer so external callers of these internal functions will not break and allow for more flexibility when migrating. "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18102192878723145
Date: 2023-08-20 22:47:10+0320
{"commit": " 0a66bdb8d36a1879246bd652e4c28500c4b951ab", "author": "Sven Klemm<sven@timescale.com>", "date": "Sun Aug 20 22:47:10 2023 +0200", "change summary": "Move functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - to_unix_microseconds(timestamptz) - to_timestamp(bigint) - to_timestamp_without_timezone(bigint) - to_date(bigint) - to_interval(bigint) - interval_to_usec(interval) - time_to_internal(anyelement) - subtract_integer_from_now(regclass, bigint) "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18150119891755445
Date: 2023-08-22 12:01:19+0320
{"commit": " cf04496e4b4237440274eb25e4e02472fc4e06fc", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 22 12:01:19 2023 +0200", "change summary": "Move utility functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - generate_uuid() - get_git_commit() - get_os_info() - tsl_loaded() "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18422493887617963
Date: 2023-08-9 15:26:03+0500
{"commit": " 44eab9cf9bef34274c88efd37a750eaa74cd8044", "author": "Konstantina Skovola<konstantina@timescale.com>", "date": "Wed Aug 9 15:26:03 2023 +0300", "change summary": "Release 2.11.2", "change details": "This release contains bug fixes since the 2.11.1 release. We recommend that you upgrade at the next available opportunity. **Features** * #5923 Feature flags for TimescaleDB features **Bugfixes** * #5680 Fix DISTINCT query with JOIN on multiple segmentby columns * #5774 Fixed two bugs in decompression sorted merge code * #5786 Ensure pg_config --cppflags are passed * #5906 Fix quoting owners in sql scripts. * #5912 Fix crash in 1-step integer policy creation **Thanks** * @mrksngl for submitting a PR to fix extension upgrade scripts * @ericdevries for reporting an issue with DISTINCT queries using segmentby columns of compressed hypertable "}
--------------------------------------------------------------------------------

請注意,查詢僅傳回指定日期範圍內的結果。

方法 2:在提供的開始日期以及一段時間增量後進行過濾。

# Method 2: Query for vectors between start_dt and a time delta td later
# Most relevant vectors between 1 August and 7 days later
docs_with_score = db.similarity_search_with_score(
query, start_date=start_dt, time_delta=td
)

for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print("Date: ", doc.metadata["date"])
print(doc.page_content)
print("-" * 80)
--------------------------------------------------------------------------------
Score: 0.18458807468414307
Date: 2023-08-3 14:30:23+0500
{"commit": " 7aeed663b9c0f337b530fd6cad47704a51a9b2ec", "author": "Dmitry Simonenko<dmitry@timescale.com>", "date": "Thu Aug 3 14:30:23 2023 +0300", "change summary": "Feature flags for TimescaleDB features", "change details": "This PR adds several GUCs which allow to enable/disable major timescaledb features: - enable_hypertable_create - enable_hypertable_compression - enable_cagg_create - enable_policy_create "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.20492422580718994
Date: 2023-08-7 18:31:40+0320
{"commit": " 07762ea4cedefc88497f0d1f8712d1515cdc5b6e", "author": "Sven Klemm<sven@timescale.com>", "date": "Mon Aug 7 18:31:40 2023 +0200", "change summary": "Test timescaledb debian 12 packages in CI", "change details": ""}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.21106326580047607
Date: 2023-08-3 14:36:39+0500
{"commit": " 2863daf3df83c63ee36c0cf7b66c522da5b4e127", "author": "Dmitry Simonenko<dmitry@timescale.com>", "date": "Thu Aug 3 14:36:39 2023 +0300", "change summary": "Support CREATE INDEX ONLY ON main table", "change details": "This PR adds support for CREATE INDEX ONLY ON clause which allows to create index only on the main table excluding chunks. Fix #5908 "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.21698051691055298
Date: 2023-08-2 20:24:14+0140
{"commit": " 3af0d282ea71d9a8f27159a6171e9516e62ec9cb", "author": "Lakshmi Narayanan Sreethar<lakshmi@timescale.com>", "date": "Wed Aug 2 20:24:14 2023 +0100", "change summary": "PG16: ExecInsertIndexTuples requires additional parameter", "change details": "PG16 adds a new boolean parameter to the ExecInsertIndexTuples function to denote if the index is a BRIN index, which is then used to determine if the index update can be skipped. The fix also removes the INDEX_ATTR_BITMAP_ALL enum value. Adapt these changes by updating the compat function to accomodate the new parameter added to the ExecInsertIndexTuples function and using an alternative for the removed INDEX_ATTR_BITMAP_ALL enum value. postgres/postgres@19d8e23 "}
--------------------------------------------------------------------------------

再次注意,我們如何獲得指定時間過濾器內的結果,與之前的查詢不同。

方法 3:在提供的結束日期和一段時間增量之前進行過濾。

# Method 3: Query for vectors between end_dt and a time delta td earlier
# Most relevant vectors between 30 August and 7 days earlier
docs_with_score = db.similarity_search_with_score(query, end_date=end_dt, time_delta=td)

for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print("Date: ", doc.metadata["date"])
print(doc.page_content)
print("-" * 80)
--------------------------------------------------------------------------------
Score: 0.17488396167755127
Date: 2023-08-29 18:13:24+0320
{"commit": " e4facda540286b0affba47ccc63959fefe2a7b26", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 29 18:13:24 2023 +0200", "change summary": "Add compatibility layer for _timescaledb_internal functions", "change details": "With timescaledb 2.12 all the functions present in _timescaledb_internal were moved into the _timescaledb_functions schema to improve schema security. This patch adds a compatibility layer so external callers of these internal functions will not break and allow for more flexibility when migrating. "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18496227264404297
Date: 2023-08-29 10:49:47+0320
{"commit": " a9751ccd5eb030026d7b975d22753f5964972389", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 29 10:49:47 2023 +0200", "change summary": "Move partitioning functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - get_partition_for_key(val anyelement) - get_partition_hash(val anyelement) "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.1871250867843628
Date: 2023-08-28 23:26:23+0320
{"commit": " b2a91494a11d8b82849b6f11f9ea6dc26ef8a8cb", "author": "Sven Klemm<sven@timescale.com>", "date": "Mon Aug 28 23:26:23 2023 +0200", "change summary": "Move ddl_internal functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - chunk_constraint_add_table_constraint(_timescaledb_catalog.chunk_constraint) - chunk_drop_replica(regclass,name) - chunk_index_clone(oid) - chunk_index_replace(oid,oid) - create_chunk_replica_table(regclass,name) - drop_stale_chunks(name,integer[]) - health() - hypertable_constraint_add_table_fk_constraint(name,name,name,integer) - process_ddl_event() - wait_subscription_sync(name,name,integer,numeric) "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18867712088363497
Date: 2023-08-27 13:20:04+0320
{"commit": " e02b1f348eb4c48def00b7d5227238b4d9d41a4a", "author": "Sven Klemm<sven@timescale.com>", "date": "Sun Aug 27 13:20:04 2023 +0200", "change summary": "Simplify schema move update script", "change details": "Use dynamic sql to create the ALTER FUNCTION statements for those functions that may not exist in previous versions. "}
--------------------------------------------------------------------------------

方法 4:我們也可以只在查詢中指定開始日期來過濾給定日期之後的所有向量。

方法 5:同樣,我們也可以只指定結束日期來過濾給定日期之前的所有向量。

# Method 4: Query all vectors after start_date
docs_with_score = db.similarity_search_with_score(query, start_date=start_dt)

for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print("Date: ", doc.metadata["date"])
print(doc.page_content)
print("-" * 80)
--------------------------------------------------------------------------------
Score: 0.17488396167755127
Date: 2023-08-29 18:13:24+0320
{"commit": " e4facda540286b0affba47ccc63959fefe2a7b26", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 29 18:13:24 2023 +0200", "change summary": "Add compatibility layer for _timescaledb_internal functions", "change details": "With timescaledb 2.12 all the functions present in _timescaledb_internal were moved into the _timescaledb_functions schema to improve schema security. This patch adds a compatibility layer so external callers of these internal functions will not break and allow for more flexibility when migrating. "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18102192878723145
Date: 2023-08-20 22:47:10+0320
{"commit": " 0a66bdb8d36a1879246bd652e4c28500c4b951ab", "author": "Sven Klemm<sven@timescale.com>", "date": "Sun Aug 20 22:47:10 2023 +0200", "change summary": "Move functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - to_unix_microseconds(timestamptz) - to_timestamp(bigint) - to_timestamp_without_timezone(bigint) - to_date(bigint) - to_interval(bigint) - interval_to_usec(interval) - time_to_internal(anyelement) - subtract_integer_from_now(regclass, bigint) "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18150119891755445
Date: 2023-08-22 12:01:19+0320
{"commit": " cf04496e4b4237440274eb25e4e02472fc4e06fc", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 22 12:01:19 2023 +0200", "change summary": "Move utility functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - generate_uuid() - get_git_commit() - get_os_info() - tsl_loaded() "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.18422493887617963
Date: 2023-08-9 15:26:03+0500
{"commit": " 44eab9cf9bef34274c88efd37a750eaa74cd8044", "author": "Konstantina Skovola<konstantina@timescale.com>", "date": "Wed Aug 9 15:26:03 2023 +0300", "change summary": "Release 2.11.2", "change details": "This release contains bug fixes since the 2.11.1 release. We recommend that you upgrade at the next available opportunity. **Features** * #5923 Feature flags for TimescaleDB features **Bugfixes** * #5680 Fix DISTINCT query with JOIN on multiple segmentby columns * #5774 Fixed two bugs in decompression sorted merge code * #5786 Ensure pg_config --cppflags are passed * #5906 Fix quoting owners in sql scripts. * #5912 Fix crash in 1-step integer policy creation **Thanks** * @mrksngl for submitting a PR to fix extension upgrade scripts * @ericdevries for reporting an issue with DISTINCT queries using segmentby columns of compressed hypertable "}
--------------------------------------------------------------------------------
# Method 5: Query all vectors before end_date
docs_with_score = db.similarity_search_with_score(query, end_date=end_dt)

for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print("Date: ", doc.metadata["date"])
print(doc.page_content)
print("-" * 80)
--------------------------------------------------------------------------------
Score: 0.16723191738128662
Date: 2023-04-11 22:01:14+0320
{"commit": " 0595ff0888f2ffb8d313acb0bda9642578a9ade3", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Apr 11 22:01:14 2023 +0200", "change summary": "Move type support functions into _timescaledb_functions schema", "change details": ""}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.1706540584564209
Date: 2023-04-6 13:00:00+0320
{"commit": " 04f43335dea11e9c467ee558ad8edfc00c1a45ed", "author": "Sven Klemm<sven@timescale.com>", "date": "Thu Apr 6 13:00:00 2023 +0200", "change summary": "Move aggregate support function into _timescaledb_functions", "change details": "This patch moves the support functions for histogram, first and last into the _timescaledb_functions schema. Since we alter the schema of the existing functions in upgrade scripts and do not change the aggregates this should work completely transparently for any user objects using those aggregates. "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.17462033033370972
Date: 2023-03-31 08:22:57+0320
{"commit": " feef9206facc5c5f506661de4a81d96ef059b095", "author": "Sven Klemm<sven@timescale.com>", "date": "Fri Mar 31 08:22:57 2023 +0200", "change summary": "Add _timescaledb_functions schema", "change details": "Currently internal user objects like chunks and our functions live in the same schema making locking down that schema hard. This patch adds a new schema _timescaledb_functions that is meant to be the schema used for timescaledb internal functions to allow separation of code and chunks or other user objects. "}
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Score: 0.17488396167755127
Date: 2023-08-29 18:13:24+0320
{"commit": " e4facda540286b0affba47ccc63959fefe2a7b26", "author": "Sven Klemm<sven@timescale.com>", "date": "Tue Aug 29 18:13:24 2023 +0200", "change summary": "Add compatibility layer for _timescaledb_internal functions", "change details": "With timescaledb 2.12 all the functions present in _timescaledb_internal were moved into the _timescaledb_functions schema to improve schema security. This patch adds a compatibility layer so external callers of these internal functions will not break and allow for more flexibility when migrating. "}
--------------------------------------------------------------------------------

主要的重點是,在上面的每個結果中,僅傳回指定時間範圍內的向量。 這些查詢非常有效率,因為它們只需要搜尋相關的分割區。

我們也可以將此功能用於問答,在問答中,我們希望在指定的時間範圍內找到最相關的向量,以用作回答問題的背景資訊。 讓我們看看下面的範例,使用 Timescale Vector 作為檢索器

# Set timescale vector as a retriever and specify start and end dates via kwargs
retriever = db.as_retriever(search_kwargs={"start_date": start_dt, "end_date": end_dt})
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0.1, model="gpt-3.5-turbo-16k")

from langchain.chains import RetrievalQA

qa_stuff = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
verbose=True,
)

query = (
"What's new with the timescaledb functions? Tell me when these changes were made."
)
response = qa_stuff.run(query)
print(response)
API 參考:ChatOpenAI | RetrievalQA


> Entering new RetrievalQA chain...

> Finished chain.
The following changes were made to the timescaledb functions:

1. "Add compatibility layer for _timescaledb_internal functions" - This change was made on Tue Aug 29 18:13:24 2023 +0200.
2. "Move functions to _timescaledb_functions schema" - This change was made on Sun Aug 20 22:47:10 2023 +0200.
3. "Move utility functions to _timescaledb_functions schema" - This change was made on Tue Aug 22 12:01:19 2023 +0200.
4. "Move partitioning functions to _timescaledb_functions schema" - This change was made on Tue Aug 29 10:49:47 2023 +0200.

請注意,LLM 用於組成答案的上下文資訊來自僅在指定日期範圍內檢索到的文檔。

這顯示了您如何使用 Timescale Vector 透過檢索與您的查詢相關的時間範圍內的文檔來增強檢索增強生成。

3. 使用 ANN 搜尋索引來加速查詢

您可以透過在嵌入欄位上建立索引來加速相似度查詢。 您應該只有在攝取了大部分資料後才執行此操作。

Timescale Vector 支援以下索引

  • timescale_vector 索引 (tsv):受 disk-ann 啟發的圖形索引,用於快速相似度搜尋(預設)。
  • pgvector 的 HNSW 索引:用於快速相似度搜尋的分層可導航小世界圖形索引。
  • pgvector 的 IVFFLAT 索引:用於快速相似度搜尋的倒排檔案索引。

重要提示:在 PostgreSQL 中,每個表在特定欄位上只能有一個索引。 因此,如果您想測試不同索引類型的效能,您可以 (1) 建立具有不同索引的多個表,(2) 在同一個表中建立多個向量欄位,並在每個欄位上建立不同的索引,或 (3) 透過刪除並重新建立同一個欄位上的索引並比較結果來進行測試。

# Initialize an existing TimescaleVector store
COLLECTION_NAME = "timescale_commits"
embeddings = OpenAIEmbeddings()
db = TimescaleVector(
collection_name=COLLECTION_NAME,
service_url=SERVICE_URL,
embedding_function=embeddings,
)

使用不帶額外參數的 create_index() 函數,預設會創建一個 timescale_vector_index,並使用預設參數。

# create an index
# by default this will create a Timescale Vector (DiskANN) index
db.create_index()

您也可以指定索引的參數。有關不同參數及其對效能影響的完整討論,請參閱 Timescale Vector 文件。

注意:您不需要指定參數,因為我們設定了智慧預設值。但如果您想進行實驗,為您的特定資料集榨取更多效能,您可以隨時指定自己的參數。

# drop the old index
db.drop_index()

# create an index
# Note: You don't need to specify m and ef_construction parameters as we set smart defaults.
db.create_index(index_type="tsv", max_alpha=1.0, num_neighbors=50)

Timescale Vector 也支援 HNSW ANN 索引演算法,以及 ivfflat ANN 索引演算法。只需在 index_type 參數中指定您要創建的索引類型,並可選擇性地指定索引的參數。

# drop the old index
db.drop_index()

# Create an HNSW index
# Note: You don't need to specify m and ef_construction parameters as we set smart defaults.
db.create_index(index_type="hnsw", m=16, ef_construction=64)
# drop the old index
db.drop_index()

# Create an IVFFLAT index
# Note: You don't need to specify num_lists and num_records parameters as we set smart defaults.
db.create_index(index_type="ivfflat", num_lists=20, num_records=1000)

一般來說,我們建議使用預設的 timescale vector index,或 HNSW index。

# drop the old index
db.drop_index()
# Create a new timescale vector index
db.create_index()

4. 使用 Timescale Vector 的自我查詢檢索器

Timescale Vector 也支援自我查詢檢索器功能,使其具有查詢自身的能力。給定一個帶有查詢語句和篩選器(單個或複合)的自然語言查詢,檢索器使用查詢建構 LLM 鏈來編寫 SQL 查詢,然後將其應用於 Timescale Vector 向量儲存庫中底層的 PostgreSQL 資料庫。

有關自我查詢的更多資訊,請參閱文件

為了說明 Timescale Vector 的自我查詢功能,我們將使用第 3 部分中的相同 gitlog 資料集。

COLLECTION_NAME = "timescale_commits"
vectorstore = TimescaleVector(
embedding_function=OpenAIEmbeddings(),
collection_name=COLLECTION_NAME,
service_url=SERVICE_URL,
)

接下來,我們將創建我們的自我查詢檢索器。為此,我們需要預先提供一些關於我們的文檔支援的元數據字段以及文檔內容的簡短描述。

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

# Give LLM info about the metadata fields
metadata_field_info = [
AttributeInfo(
name="id",
description="A UUID v1 generated from the date of the commit",
type="uuid",
),
AttributeInfo(
name="date",
description="The date of the commit in timestamptz format",
type="timestamptz",
),
AttributeInfo(
name="author_name",
description="The name of the author of the commit",
type="string",
),
AttributeInfo(
name="author_email",
description="The email address of the author of the commit",
type="string",
),
]
document_content_description = "The git log commit summary containing the commit hash, author, date of commit, change summary and change details"

# Instantiate the self-query retriever from an LLM
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)

現在讓我們在我們的 gitlog 資料集上測試一下自我查詢檢索器。

運行下面的查詢,並注意您如何在自然語言中指定查詢、帶篩選器的查詢和帶複合篩選器的查詢(帶有 AND、OR 的篩選器),自我查詢檢索器會將該查詢翻譯成 SQL,並在 Timescale Vector PostgreSQL 向量儲存庫上執行搜尋。

這說明了自我查詢檢索器的強大功能。您可以使用它在您的向量儲存庫上執行複雜的搜尋,而無需您或您的使用者直接編寫任何 SQL!

# This example specifies a relevant query
retriever.invoke("What are improvements made to continuous aggregates?")
/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/libs/langchain/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
``````output
query='improvements to continuous aggregates' filter=None limit=None
[Document(page_content='{"commit": " 35c91204987ccb0161d745af1a39b7eb91bc65a5", "author": "Fabr\\u00edzio de Royes Mello<fabriziomello@gmail.com>", "date": "Thu Nov 24 13:19:36 2022 -0300", "change summary": "Add Hierarchical Continuous Aggregates validations", "change details": "Commit 3749953e introduce Hierarchical Continuous Aggregates (aka Continuous Aggregate on top of another Continuous Aggregate) but it lacks of some basic validations.  Validations added during the creation of a Hierarchical Continuous Aggregate:  * Forbid create a continuous aggregate with fixed-width bucket on top of   a continuous aggregate with variable-width bucket.  * Forbid incompatible bucket widths:   - should not be equal;   - bucket width of the new continuous aggregate should be greater than     the source continuous aggregate;   - bucket width of the new continuous aggregate should be multiple of     the source continuous aggregate. "}', metadata={'id': 'c98d1c00-6c13-11ed-9bbe-23925ce74d13', 'date': '2022-11-24 13:19:36+-500', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 446, 'author_name': 'Fabrízio de Royes Mello', 'commit_hash': ' 35c91204987ccb0161d745af1a39b7eb91bc65a5', 'author_email': 'fabriziomello@gmail.com'}),
Document(page_content='{"commit": " 3749953e9704e45df8f621607989ada0714ce28d", "author": "Fabr\\u00edzio de Royes Mello<fabriziomello@gmail.com>", "date": "Wed Oct 5 18:45:40 2022 -0300", "change summary": "Hierarchical Continuous Aggregates", "change details": "Enable users create Hierarchical Continuous Aggregates (aka Continuous Aggregates on top of another Continuous Aggregates). With this PR users can create levels of aggregation granularity in Continuous Aggregates making the refresh process even faster. A problem with this feature can be in upper levels we can end up with the \\"average of averages\\". But to get the \\"real average\\" we can rely on \\"stats_aggs\\" TimescaleDB Toolkit function that calculate and store the partials that can be finalized with other toolkit functions like \\"average\\" and \\"sum\\". Closes #1400 "}', metadata={'id': '0df31a00-44f7-11ed-9794-ebcc1227340f', 'date': '2022-10-5 18:45:40+-500', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 470, 'author_name': 'Fabrízio de Royes Mello', 'commit_hash': ' 3749953e9704e45df8f621607989ada0714ce28d', 'author_email': 'fabriziomello@gmail.com'}),
Document(page_content='{"commit": " a6ff7ba6cc15b280a275e5acd315741ec9c86acc", "author": "Mats Kindahl<mats@timescale.com>", "date": "Tue Feb 28 12:04:17 2023 +0100", "change summary": "Rename columns in old-style continuous aggregates", "change details": "For continuous aggregates with the old-style partial aggregates renaming columns that are not in the group-by clause will generate an error when upgrading to a later version. The reason is that it is implicitly assumed that the name of the column is the same as for the direct view. This holds true for new-style continous aggregates, but is not always true for old-style continuous aggregates. In particular, columns that are not part of the `GROUP BY` clause can have an internally generated name. This commit fixes that by extracting the name of the column from the partial view and use that when renaming the partial view column and the materialized table column. "}', metadata={'id': 'a49ace80-b757-11ed-8138-2390fd44ffd9', 'date': '2023-02-28 12:04:17+0140', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 294, 'author_name': 'Mats Kindahl', 'commit_hash': ' a6ff7ba6cc15b280a275e5acd315741ec9c86acc', 'author_email': 'mats@timescale.com'}),
Document(page_content='{"commit": " 5bba74a2ec083728f8e93e09d03d102568fd72b5", "author": "Fabr\\u00edzio de Royes Mello<fabriziomello@gmail.com>", "date": "Mon Aug 7 19:49:47 2023 -0300", "change summary": "Relax strong table lock when refreshing a CAGG", "change details": "When refreshing a Continuous Aggregate we take a table lock on _timescaledb_catalog.continuous_aggs_invalidation_threshold when processing the invalidation logs (the first transaction of the refresh Continuous Aggregate procedure). It means that even two different Continuous Aggregates over two different hypertables will wait each other in the first phase of the refreshing procedure. Also it lead to problems when a pg_dump is running because it take an AccessShareLock on tables so Continuous Aggregate refresh execution will wait until the pg_dump finish. Improved it by relaxing the strong table-level lock to a row-level lock so now the Continuous Aggregate refresh procedure can be executed in multiple sessions with less locks. Fix #3554 "}', metadata={'id': 'b5583780-3574-11ee-a5ba-2e305874a58f', 'date': '2023-08-7 19:49:47+-500', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 27, 'author_name': 'Fabrízio de Royes Mello', 'commit_hash': ' 5bba74a2ec083728f8e93e09d03d102568fd72b5', 'author_email': 'fabriziomello@gmail.com'})]
# This example specifies a filter
retriever.invoke("What commits did Sven Klemm add?")
query=' ' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='author_name', value='Sven Klemm') limit=None
[Document(page_content='{"commit": " e2e7ae304521b74ac6b3f157a207da047d44ab06", "author": "Sven Klemm<sven@timescale.com>", "date": "Fri Mar 3 11:22:06 2023 +0100", "change summary": "Don\'t run sanitizer test on individual PRs", "change details": "Sanitizer tests take a long time to run so we don\'t want to run them on individual PRs but instead run them nightly and on commits to master. "}', metadata={'id': '3f401b00-b9ad-11ed-b5ea-a3fd40b9ac16', 'date': '2023-03-3 11:22:06+0140', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 295, 'author_name': 'Sven Klemm', 'commit_hash': ' e2e7ae304521b74ac6b3f157a207da047d44ab06', 'author_email': 'sven@timescale.com'}),
Document(page_content='{"commit": " d8f19e57a04d17593df5f2c694eae8775faddbc7", "author": "Sven Klemm<sven@timescale.com>", "date": "Wed Feb 1 08:34:20 2023 +0100", "change summary": "Bump version of setup-wsl github action", "change details": "The currently used version pulls in Node.js 12 which is deprecated on github. https://github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/ "}', metadata={'id': 'd70de600-a202-11ed-85d6-30b6df240f49', 'date': '2023-02-1 08:34:20+0140', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 350, 'author_name': 'Sven Klemm', 'commit_hash': ' d8f19e57a04d17593df5f2c694eae8775faddbc7', 'author_email': 'sven@timescale.com'}),
Document(page_content='{"commit": " 83b13cf6f73a74656dde9cc6ec6cf76740cddd3c", "author": "Sven Klemm<sven@timescale.com>", "date": "Fri Nov 25 08:27:45 2022 +0100", "change summary": "Use packaged postgres for sqlsmith and coverity CI", "change details": "The sqlsmith and coverity workflows used the cache postgres build but could not produce a build by themselves and therefore relied on other workflows to produce the cached binaries. This patch changes those workflows to use normal postgres packages instead of custom built postgres to remove that dependency. "}', metadata={'id': 'a786ae80-6c92-11ed-bd6c-a57bd3348b97', 'date': '2022-11-25 08:27:45+0140', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 447, 'author_name': 'Sven Klemm', 'commit_hash': ' 83b13cf6f73a74656dde9cc6ec6cf76740cddd3c', 'author_email': 'sven@timescale.com'}),
Document(page_content='{"commit": " b1314e63f2ff6151ab5becfb105afa3682286a4d", "author": "Sven Klemm<sven@timescale.com>", "date": "Thu Dec 22 12:03:35 2022 +0100", "change summary": "Fix RPM package test for PG15 on centos 7", "change details": "Installing PG15 on Centos 7 requires the EPEL repository to satisfy the dependencies. "}', metadata={'id': '477b1d80-81e8-11ed-9c8c-9b5abbd67c98', 'date': '2022-12-22 12:03:35+0140', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 408, 'author_name': 'Sven Klemm', 'commit_hash': ' b1314e63f2ff6151ab5becfb105afa3682286a4d', 'author_email': 'sven@timescale.com'})]
# This example specifies a query and filter
retriever.invoke("What commits about timescaledb_functions did Sven Klemm add?")
query='timescaledb_functions' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='author_name', value='Sven Klemm') limit=None
[Document(page_content='{"commit": " 04f43335dea11e9c467ee558ad8edfc00c1a45ed", "author": "Sven Klemm<sven@timescale.com>", "date": "Thu Apr 6 13:00:00 2023 +0200", "change summary": "Move aggregate support function into _timescaledb_functions", "change details": "This patch moves the support functions for histogram, first and last into the _timescaledb_functions schema. Since we alter the schema of the existing functions in upgrade scripts and do not change the aggregates this should work completely transparently for any user objects using those aggregates. "}', metadata={'id': '2cb47800-d46a-11ed-8f0e-2b624245c561', 'date': '2023-04-6 13:00:00+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 233, 'author_name': 'Sven Klemm', 'commit_hash': ' 04f43335dea11e9c467ee558ad8edfc00c1a45ed', 'author_email': 'sven@timescale.com'}),
Document(page_content='{"commit": " feef9206facc5c5f506661de4a81d96ef059b095", "author": "Sven Klemm<sven@timescale.com>", "date": "Fri Mar 31 08:22:57 2023 +0200", "change summary": "Add _timescaledb_functions schema", "change details": "Currently internal user objects like chunks and our functions live in the same schema making locking down that schema hard. This patch adds a new schema _timescaledb_functions that is meant to be the schema used for timescaledb internal functions to allow separation of code and chunks or other user objects. "}', metadata={'id': '7a257680-cf8c-11ed-848c-a515e8687479', 'date': '2023-03-31 08:22:57+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 239, 'author_name': 'Sven Klemm', 'commit_hash': ' feef9206facc5c5f506661de4a81d96ef059b095', 'author_email': 'sven@timescale.com'}),
Document(page_content='{"commit": " 0a66bdb8d36a1879246bd652e4c28500c4b951ab", "author": "Sven Klemm<sven@timescale.com>", "date": "Sun Aug 20 22:47:10 2023 +0200", "change summary": "Move functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for the following functions: - to_unix_microseconds(timestamptz) - to_timestamp(bigint) - to_timestamp_without_timezone(bigint) - to_date(bigint) - to_interval(bigint) - interval_to_usec(interval) - time_to_internal(anyelement) - subtract_integer_from_now(regclass, bigint) "}', metadata={'id': 'bb99db00-3f9a-11ee-a8dc-0b9c1a5a37c4', 'date': '2023-08-20 22:47:10+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 41, 'author_name': 'Sven Klemm', 'commit_hash': ' 0a66bdb8d36a1879246bd652e4c28500c4b951ab', 'author_email': 'sven@timescale.com'}),
Document(page_content='{"commit": " 56ea8b4de93cefc38e002202d8ac96947dcbaa77", "author": "Sven Klemm<sven@timescale.com>", "date": "Thu Apr 13 13:16:14 2023 +0200", "change summary": "Move trigger functions to _timescaledb_functions schema", "change details": "To increase schema security we do not want to mix our own internal objects with user objects. Since chunks are created in the _timescaledb_internal schema our internal functions should live in a different dedicated schema. This patch make the necessary adjustments for our trigger functions. "}', metadata={'id': '9a255300-d9ec-11ed-988f-7086c8ca463a', 'date': '2023-04-13 13:16:14+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 44, 'author_name': 'Sven Klemm', 'commit_hash': ' 56ea8b4de93cefc38e002202d8ac96947dcbaa77', 'author_email': 'sven@timescale.com'})]
# This example specifies a time-based filter
retriever.invoke("What commits were added in July 2023?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='date', value='2023-07-01T00:00:00Z'), Comparison(comparator=<Comparator.LTE: 'lte'>, attribute='date', value='2023-07-31T23:59:59Z')]) limit=None
[Document(page_content='{"commit": " 5cf354e2469ee7e43248bed382a4b49fc7ccfecd", "author": "Markus Engel<engel@sero-systems.de>", "date": "Mon Jul 31 11:28:25 2023 +0200", "change summary": "Fix quoting owners in sql scripts.", "change details": "When referring to a role from a string type, it must be properly quoted using pg_catalog.quote_ident before it can be casted to regrole. Fixed this, especially in update scripts. "}', metadata={'id': '99590280-2f84-11ee-915b-5715b2447de4', 'date': '2023-07-31 11:28:25+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 76, 'author_name': 'Markus Engel', 'commit_hash': ' 5cf354e2469ee7e43248bed382a4b49fc7ccfecd', 'author_email': 'engel@sero-systems.de'}),
Document(page_content='{"commit": " 88aaf23ae37fe7f47252b87325eb570aa417c607", "author": "noctarius aka Christoph Engelbert<me@noctarius.com>", "date": "Wed Jul 12 14:53:40 2023 +0200", "change summary": "Allow Replica Identity (Alter Table) on CAGGs (#5868)", "change details": "This commit is a follow up of #5515, which added support for ALTER TABLE\\r ... REPLICA IDENTITY (FULL | INDEX) on hypertables.\\r \\r This commit allows the execution against materialized hypertables to\\r enable update / delete operations on continuous aggregates when logical\\r replication in enabled for them."}', metadata={'id': '1fcfa200-20b3-11ee-9a18-370561c7cb1a', 'date': '2023-07-12 14:53:40+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 96, 'author_name': 'noctarius aka Christoph Engelbert', 'commit_hash': ' 88aaf23ae37fe7f47252b87325eb570aa417c607', 'author_email': 'me@noctarius.com'}),
Document(page_content='{"commit": " d5268c36fbd23fa2a93c0371998286e8688247bb", "author": "Alexander Kuzmenkov<36882414+akuzm@users.noreply.github.com>", "date": "Fri Jul 28 13:35:05 2023 +0200", "change summary": "Fix SQLSmith workflow", "change details": "The build was failing because it was picking up the wrong version of Postgres. Remove it. "}', metadata={'id': 'cc0fba80-2d3a-11ee-ae7d-36dc25cad3b8', 'date': '2023-07-28 13:35:05+0320', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 82, 'author_name': 'Alexander Kuzmenkov', 'commit_hash': ' d5268c36fbd23fa2a93c0371998286e8688247bb', 'author_email': '36882414+akuzm@users.noreply.github.com'}),
Document(page_content='{"commit": " 61c288ec5eb966a9b4d8ed90cd026ffc5e3543c9", "author": "Lakshmi Narayanan Sreethar<lakshmi@timescale.com>", "date": "Tue Jul 25 16:11:35 2023 +0530", "change summary": "Fix broken CI after PG12 removal", "change details": "The commit cdea343cc updated the gh_matrix_builder.py script but failed to import PG_LATEST variable into the script thus breaking the CI. Import that variable to fix the CI tests. "}', metadata={'id': 'd3835980-2ad7-11ee-b98d-c4e3092e076e', 'date': '2023-07-25 16:11:35+0850', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 84, 'author_name': 'Lakshmi Narayanan Sreethar', 'commit_hash': ' 61c288ec5eb966a9b4d8ed90cd026ffc5e3543c9', 'author_email': 'lakshmi@timescale.com'})]
# This example specifies a query and a LIMIT value
retriever.invoke("What are two commits about hierarchical continuous aggregates?")
query='hierarchical continuous aggregates' filter=None limit=2
[Document(page_content='{"commit": " 35c91204987ccb0161d745af1a39b7eb91bc65a5", "author": "Fabr\\u00edzio de Royes Mello<fabriziomello@gmail.com>", "date": "Thu Nov 24 13:19:36 2022 -0300", "change summary": "Add Hierarchical Continuous Aggregates validations", "change details": "Commit 3749953e introduce Hierarchical Continuous Aggregates (aka Continuous Aggregate on top of another Continuous Aggregate) but it lacks of some basic validations.  Validations added during the creation of a Hierarchical Continuous Aggregate:  * Forbid create a continuous aggregate with fixed-width bucket on top of   a continuous aggregate with variable-width bucket.  * Forbid incompatible bucket widths:   - should not be equal;   - bucket width of the new continuous aggregate should be greater than     the source continuous aggregate;   - bucket width of the new continuous aggregate should be multiple of     the source continuous aggregate. "}', metadata={'id': 'c98d1c00-6c13-11ed-9bbe-23925ce74d13', 'date': '2022-11-24 13:19:36+-500', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 446, 'author_name': 'Fabrízio de Royes Mello', 'commit_hash': ' 35c91204987ccb0161d745af1a39b7eb91bc65a5', 'author_email': 'fabriziomello@gmail.com'}),
Document(page_content='{"commit": " 3749953e9704e45df8f621607989ada0714ce28d", "author": "Fabr\\u00edzio de Royes Mello<fabriziomello@gmail.com>", "date": "Wed Oct 5 18:45:40 2022 -0300", "change summary": "Hierarchical Continuous Aggregates", "change details": "Enable users create Hierarchical Continuous Aggregates (aka Continuous Aggregates on top of another Continuous Aggregates). With this PR users can create levels of aggregation granularity in Continuous Aggregates making the refresh process even faster. A problem with this feature can be in upper levels we can end up with the \\"average of averages\\". But to get the \\"real average\\" we can rely on \\"stats_aggs\\" TimescaleDB Toolkit function that calculate and store the partials that can be finalized with other toolkit functions like \\"average\\" and \\"sum\\". Closes #1400 "}', metadata={'id': '0df31a00-44f7-11ed-9794-ebcc1227340f', 'date': '2022-10-5 18:45:40+-500', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 470, 'author_name': 'Fabrízio de Royes Mello', 'commit_hash': ' 3749953e9704e45df8f621607989ada0714ce28d', 'author_email': 'fabriziomello@gmail.com'})]

5. 使用現有的 TimescaleVector 向量儲存庫

在上面的範例中,我們從文檔集合創建了一個向量儲存庫。但是,通常我們希望將資料插入現有的向量儲存庫並從中查詢資料。讓我們看看如何初始化、向 TimescaleVector 向量儲存庫中現有的文檔集合新增文檔以及查詢。

要使用現有的 Timescale Vector 儲存庫,我們需要知道我們要查詢的資料表名稱 (COLLECTION_NAME) 和雲端 PostgreSQL 資料庫的 URL (SERVICE_URL)。

# Initialize the existing
COLLECTION_NAME = "timescale_commits"
embeddings = OpenAIEmbeddings()
vectorstore = TimescaleVector(
collection_name=COLLECTION_NAME,
service_url=SERVICE_URL,
embedding_function=embeddings,
)

要將新資料載入到資料表中,我們使用 add_document() 函數。此函數接受文檔列表和元資料列表。元資料必須包含每個文檔的唯一 ID。

如果您希望您的文檔與目前的日期和時間相關聯,則無需建立 ID 列表。系統會自動為每個文檔產生一個 uuid。

如果您希望您的文檔與過去的日期和時間相關聯,您可以使用 timecale-vector Python 庫中的 uuid_from_time 函數建立 ID 列表,如上面的第 2 節所示。此函數接受一個 datetime 物件,並傳回一個 uuid,其中日期和時間編碼在 uuid 中。

# Add documents to a collection in TimescaleVector
ids = vectorstore.add_documents([Document(page_content="foo")])
ids
['a34f2b8a-53d7-11ee-8cc3-de1e4b2a0118']
# Query the vectorstore for similar documents
docs_with_score = vectorstore.similarity_search_with_score("foo")
docs_with_score[0]
(Document(page_content='foo', metadata={}), 5.006789860928507e-06)
docs_with_score[1]
(Document(page_content='{"commit": " 00b566dfe478c11134bcf1e7bcf38943e7fafe8f", "author": "Fabr\\u00edzio de Royes Mello<fabriziomello@gmail.com>", "date": "Mon Mar 6 15:51:03 2023 -0300", "change summary": "Remove unused functions", "change details": "We don\'t use `ts_catalog_delete[_only]` functions anywhere and instead we rely on `ts_catalog_delete_tid[_only]` functions so removing it from our code base. "}', metadata={'id': 'd7f5c580-bc4f-11ed-9712-ffa0126a201a', 'date': '2023-03-6 15:51:03+-500', 'source': '/Users/avtharsewrathan/sideprojects2023/timescaleai/tsv-langchain/langchain/docs/docs/modules/ts_git_log.json', 'seq_num': 285, 'author_name': 'Fabrízio de Royes Mello', 'commit_hash': ' 00b566dfe478c11134bcf1e7bcf38943e7fafe8f', 'author_email': 'fabriziomello@gmail.com'}),
0.23607668446580354)

刪除資料

您可以透過 uuid 或元資料上的篩選器刪除資料。

ids = vectorstore.add_documents([Document(page_content="Bar")])

vectorstore.delete(ids)
True

如果您想定期更新從特定來源或特定日期或某些其他元資料屬性抓取的資訊,則使用元資料刪除資料特別有用。

vectorstore.add_documents(
[Document(page_content="Hello World", metadata={"source": "www.example.com/hello"})]
)
vectorstore.add_documents(
[Document(page_content="Adios", metadata={"source": "www.example.com/adios"})]
)

vectorstore.delete_by_metadata({"source": "www.example.com/adios"})

vectorstore.add_documents(
[
Document(
page_content="Adios, but newer!",
metadata={"source": "www.example.com/adios"},
)
]
)
['c6367004-53d7-11ee-8cc3-de1e4b2a0118']

覆寫向量儲存庫

如果您有現有的集合,您可以透過執行 from_documents 並設定 pre_delete_collection = True 來覆寫它。

db = TimescaleVector.from_documents(
documents=docs,
embedding=embeddings,
collection_name=COLLECTION_NAME,
service_url=SERVICE_URL,
pre_delete_collection=True,
)
docs_with_score = db.similarity_search_with_score("foo")
docs_with_score[0]

這個頁面對您有幫助嗎?