Milvus
Milvus 是一個資料庫,用於儲存、索引和管理由深度神經網路和其他機器學習 (ML) 模型產生的大量嵌入向量。
本筆記本展示如何使用與 Milvus 向量資料庫相關的功能。
Setup(設定)
您需要使用 pip install -qU langchain-milvus
安裝 langchain-milvus
才能使用此整合。
%pip install -qU langchain_milvus
最新版本的 pymilvus 附帶一個本地向量資料庫 Milvus Lite,非常適合原型設計。如果您有大量資料(例如超過一百萬個文檔),我們建議在 docker 或 kubernetes 上設定效能更高的 Milvus 伺服器。
Credentials(憑證)
使用 Milvus
向量資料庫不需要憑證。
Initialization(初始化)
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
from langchain_milvus import Milvus
# The easiest way is to use Milvus Lite where everything is stored in a local file.
# If you have a Milvus server you can use the server URI such as "https://127.0.0.1:19530".
URI = "./milvus_example.db"
vector_store = Milvus(
embedding_function=embeddings,
connection_args={"uri": URI},
)
Compartmentalize the data with Milvus Collections(使用 Milvus 集合來區隔資料)
您可以將不同的無關文件儲存在同一個 Milvus 實例中的不同集合中,以維持上下文
以下是如何建立新集合
from langchain_core.documents import Document
vector_store_saved = Milvus.from_documents(
[Document(page_content="foo!")],
embeddings,
collection_name="langchain_example",
connection_args={"uri": URI},
)
以下是如何檢索儲存的集合
vector_store_loaded = Milvus(
embeddings,
connection_args={"uri": URI},
collection_name="langchain_example",
)
Manage vector store(管理向量資料庫)
建立向量資料庫後,我們可以透過新增和刪除不同的項目與之互動。
Add items to vector store(將項目新增至向量資料庫)
我們可以使用 add_documents
函數將項目新增至向量資料庫。
from uuid import uuid4
from langchain_core.documents import Document
document_1 = Document(
page_content="I had chocalate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents, ids=uuids)
['b0248595-2a41-4f6b-9c25-3a24c1278bb3',
'fa642726-5329-4495-a072-187e948dd71f',
'9905001c-a4a3-455e-ab94-72d0ed11b476',
'eacc7256-d7fa-4036-b1f7-83d7a4bee0c5',
'7508f7ff-c0c9-49ea-8189-634f8a0244d8',
'2e179609-3ff7-4c6a-9e05-08978903fe26',
'fab1f2ac-43e1-45f9-b81b-fc5d334c6508',
'1206d237-ee3a-484f-baf2-b5ac38eeb314',
'd43cbf9a-a772-4c40-993b-9439065fec01',
'25e667bb-6f09-4574-a368-661069301906']
Delete items from vector store(從向量資料庫刪除項目)
vector_store.delete(ids=[uuids[-1]])
(insert count: 0, delete count: 1, upsert count: 0, timestamp: 0, success count: 0, err count: 0, cost: 0)
Query vector store(查詢向量資料庫)
建立向量資料庫並新增相關文件後,您很可能會希望在鏈或代理程式的執行期間查詢它。
Query directly(直接查詢)
Similarity search(相似度搜尋)
使用中繼資料篩選執行簡單的相似度搜尋可以如下進行
results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
expr='source == "tweet"',
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'pk': '9905001c-a4a3-455e-ab94-72d0ed11b476', 'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'pk': '1206d237-ee3a-484f-baf2-b5ac38eeb314', 'source': 'tweet'}]
Similarity search with score(使用分數進行相似度搜尋)
您也可以使用分數進行搜尋
results = vector_store.similarity_search_with_score(
"Will it be hot tomorrow?", k=1, expr='source == "news"'
)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=21192.628906] bar [{'pk': '2', 'source': 'https://example.com'}]
如需使用 Milvus
向量資料庫時可用的所有搜尋選項的完整清單,您可以瀏覽 API 參考文檔。
Query by turning into retriever(透過轉換為檢索器進行查詢)
您也可以將向量資料庫轉換為檢索器,以便在您的鏈中更輕鬆地使用。
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
[Document(metadata={'pk': 'eacc7256-d7fa-4036-b1f7-83d7a4bee0c5', 'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]
Usage for retrieval-augmented generation(用於檢索增強生成)
有關如何將此向量資料庫用於檢索增強生成 (RAG) 的指南,請參閱以下各節
每位使用者的檢索
在建立檢索應用程式時,您通常需要考慮多位使用者。這表示您可能不僅僅儲存一位使用者的資料,而是儲存多位不同使用者的資料,並且他們不應該能夠看到彼此的資料。
Milvus 建議使用 partition_key 來實作多租戶,以下是一個範例。
Partition key 的功能目前在 Milvus Lite 中尚不可用。如果您想使用它,您需要從 docker 或 kubernetes 啟動 Milvus 伺服器。
from langchain_core.documents import Document
docs = [
Document(page_content="i worked at kensho", metadata={"namespace": "harrison"}),
Document(page_content="i worked at facebook", metadata={"namespace": "ankush"}),
]
vectorstore = Milvus.from_documents(
docs,
embeddings,
connection_args={"uri": URI},
drop_old=True,
partition_key_field="namespace", # Use the "namespace" field as the partition key
)
要使用 partition key 執行搜尋,您應該在搜尋請求的布林運算式中包含以下任一項
search_kwargs={"expr": '<partition_key> == "xxxx"'}
search_kwargs={"expr": '<partition_key> == in ["xxx", "xxx"]'}
請將 <partition_key>
替換為指定為 partition key 的欄位名稱。
Milvus 會根據指定的 partition key 切換到 partition,根據 partition key 過濾實體,並在過濾後的實體中搜尋。
# This will only get documents for Ankush
vectorstore.as_retriever(search_kwargs={"expr": 'namespace == "ankush"'}).invoke(
"where did i work?"
)
[Document(page_content='i worked at facebook', metadata={'namespace': 'ankush'})]
# This will only get documents for Harrison
vectorstore.as_retriever(search_kwargs={"expr": 'namespace == "harrison"'}).invoke(
"where did i work?"
)
[Document(page_content='i worked at kensho', metadata={'namespace': 'harrison'})]
API 參考
如需所有 __ModuleName__VectorStore 功能和配置的詳細文件,請前往 API 參考:https://langchain-python.dev.org.tw/api_reference/milvus/vectorstores/langchain_milvus.vectorstores.milvus.Milvus.html